{"title":"A Proposed Method for Quantifying Thermal Exposure Incurred during Rough-Rice Drying","authors":"S. Graham‐Acquaah, T. Siebenmorgen","doi":"10.13031/TRANS.14063","DOIUrl":null,"url":null,"abstract":"HighlightsDrying conditions affect rice end-use functionality.Thermal exposure incurred by rough rice may differ depending on drying conditions.A framework is proposed for deriving an index that can show how much heat exposure rough rice incurs during drying.Abstract. Heated air is used to dry most rice in the U.S. Thus, commercial rice drying can be considered a thermal process that aims to remove moisture from rough rice until a desired moisture content is reached. Parallels can be drawn between rice drying and thermal sterilization that is targeted at reducing microbial load because moisture content reduction during drying follows similar decay rate kinetics as the reduction in microbial load during thermal sterilization. Given the different combinations of drying air conditions (air temperature and relative humidity), as well as drying and tempering durations, employed in various dryer designs for rice drying and the impact that these conditions have on rice end-use functionality, this study sought to derive a thermal treatment index (drying process values) that is similar to the F0 value concept used in thermal sterilization for quantifying and comparing the thermal exposure incurred by rice during drying under various scenarios. Using data collected from rough-rice drying experiments, a decimal desorption value (Dmv) that represents the duration required to cause a 90% reduction in moisture ratio during drying at a specified temperature was determined, from which a thermal desorption constant (Zmv) that represents the increase in temperature necessary to cause a 90% reduction in Dmv during drying was established. Subsequently, a thermal desorption value (Fmv) was derived to express the duration that a rice lot would have been heat treated at a reference temperature during drying to produce an equivalent effect on moisture content as that produced by the actual drying process. Keywords: End use, Moisture content, Peak viscosity, Postharvest, Relative humidity, Rice, Temperature.","PeriodicalId":23120,"journal":{"name":"Transactions of the ASABE","volume":"41 1","pages":"475-484"},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the ASABE","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.13031/TRANS.14063","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 2
Abstract
HighlightsDrying conditions affect rice end-use functionality.Thermal exposure incurred by rough rice may differ depending on drying conditions.A framework is proposed for deriving an index that can show how much heat exposure rough rice incurs during drying.Abstract. Heated air is used to dry most rice in the U.S. Thus, commercial rice drying can be considered a thermal process that aims to remove moisture from rough rice until a desired moisture content is reached. Parallels can be drawn between rice drying and thermal sterilization that is targeted at reducing microbial load because moisture content reduction during drying follows similar decay rate kinetics as the reduction in microbial load during thermal sterilization. Given the different combinations of drying air conditions (air temperature and relative humidity), as well as drying and tempering durations, employed in various dryer designs for rice drying and the impact that these conditions have on rice end-use functionality, this study sought to derive a thermal treatment index (drying process values) that is similar to the F0 value concept used in thermal sterilization for quantifying and comparing the thermal exposure incurred by rice during drying under various scenarios. Using data collected from rough-rice drying experiments, a decimal desorption value (Dmv) that represents the duration required to cause a 90% reduction in moisture ratio during drying at a specified temperature was determined, from which a thermal desorption constant (Zmv) that represents the increase in temperature necessary to cause a 90% reduction in Dmv during drying was established. Subsequently, a thermal desorption value (Fmv) was derived to express the duration that a rice lot would have been heat treated at a reference temperature during drying to produce an equivalent effect on moisture content as that produced by the actual drying process. Keywords: End use, Moisture content, Peak viscosity, Postharvest, Relative humidity, Rice, Temperature.
期刊介绍:
This peer-reviewed journal publishes research that advances the engineering of agricultural, food, and biological systems. Submissions must include original data, analysis or design, or synthesis of existing information; research information for the improvement of education, design, construction, or manufacturing practice; or significant and convincing evidence that confirms and strengthens the findings of others or that revises ideas or challenges accepted theory.