{"title":"Human population induced urban developments and their effects on temperature rise: a nonlinear mathematical model","authors":"Abhinav Tandon, Prachi Rai Verma","doi":"10.1016/j.ecocom.2021.100947","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Excessive infrastructural developments, driven by urbanization, have not only brought destruction of forests, but also exacerbated the temperature of cities (or towns) due to formation of urban </span>heat islands. Keeping such an urban system in mind, a nonlinear dynamical model is formulated in the proposed work in terms of system of differential equations. The model, comprising of forest resources, human population, urban infrastructural developments and temperature as system variables, is formulated on the assumption that infrastructural developments, induced through human population, escalate temperature of the region at the cost of </span>deforestation. The derived model is mathematically analyzed for qualitative properties of its equilibrium solutions, extending from their existences to stabilities. Further, to demonstrate the impact of parametric variations on dynamical behavior, the system is also investigated for transcritical and Hopf - bifurcations. Quantitative analysis is also being executed with available numerical data to substantiate qualitative findings and to determine sensitiveness of equilibrium values of model outcomes towards system parameters. The results reveal that any of the parameters, which directly or indirectly, responsible for escalation in temperature of the region can put the system in a state of periodic oscillations, arises through Hopf - bifurcation. Therefore, it is suggested to control urban infrastructural developments through implementation of government strategies, which should include check over illegal encroachment of forested land for infrastructural developments.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"47 ","pages":"Article 100947"},"PeriodicalIF":3.1000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ecocom.2021.100947","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Complexity","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476945X21000404","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
Excessive infrastructural developments, driven by urbanization, have not only brought destruction of forests, but also exacerbated the temperature of cities (or towns) due to formation of urban heat islands. Keeping such an urban system in mind, a nonlinear dynamical model is formulated in the proposed work in terms of system of differential equations. The model, comprising of forest resources, human population, urban infrastructural developments and temperature as system variables, is formulated on the assumption that infrastructural developments, induced through human population, escalate temperature of the region at the cost of deforestation. The derived model is mathematically analyzed for qualitative properties of its equilibrium solutions, extending from their existences to stabilities. Further, to demonstrate the impact of parametric variations on dynamical behavior, the system is also investigated for transcritical and Hopf - bifurcations. Quantitative analysis is also being executed with available numerical data to substantiate qualitative findings and to determine sensitiveness of equilibrium values of model outcomes towards system parameters. The results reveal that any of the parameters, which directly or indirectly, responsible for escalation in temperature of the region can put the system in a state of periodic oscillations, arises through Hopf - bifurcation. Therefore, it is suggested to control urban infrastructural developments through implementation of government strategies, which should include check over illegal encroachment of forested land for infrastructural developments.
期刊介绍:
Ecological Complexity is an international journal devoted to the publication of high quality, peer-reviewed articles on all aspects of biocomplexity in the environment, theoretical ecology, and special issues on topics of current interest. The scope of the journal is wide and interdisciplinary with an integrated and quantitative approach. The journal particularly encourages submission of papers that integrate natural and social processes at appropriately broad spatio-temporal scales.
Ecological Complexity will publish research into the following areas:
• All aspects of biocomplexity in the environment and theoretical ecology
• Ecosystems and biospheres as complex adaptive systems
• Self-organization of spatially extended ecosystems
• Emergent properties and structures of complex ecosystems
• Ecological pattern formation in space and time
• The role of biophysical constraints and evolutionary attractors on species assemblages
• Ecological scaling (scale invariance, scale covariance and across scale dynamics), allometry, and hierarchy theory
• Ecological topology and networks
• Studies towards an ecology of complex systems
• Complex systems approaches for the study of dynamic human-environment interactions
• Using knowledge of nonlinear phenomena to better guide policy development for adaptation strategies and mitigation to environmental change
• New tools and methods for studying ecological complexity