Learning a Dynamic Re-combination Strategy of Forecast Techniques at Runtime

M. Sommer, Sven Tomforde, J. Hähner
{"title":"Learning a Dynamic Re-combination Strategy of Forecast Techniques at Runtime","authors":"M. Sommer, Sven Tomforde, J. Hähner","doi":"10.1109/ICAC.2015.70","DOIUrl":null,"url":null,"abstract":"Traffic experts try to optimise the signalisation of traffic light controllers during design-time based on historic traffic flow data. Traffic exhibits dynamic behaviour. Due to changing traffic demands, new and flexible traffic management systems are needed that optimise themselves during runtime. Organic Traffic Control is such a decentralised, self-organising system that adapts the green times of traffic lights to the current traffic conditions. Forecasts of future traffic conditions may result in a faster adaptation, higher robustness and flexibility. The combination of several forecasting techniques leads to fewer forecast errors. This paper presents three novel combination strategies from the machine learning domain using an Artificial Neural Network, Historic Load Curves and an Extended Classifier System.","PeriodicalId":6643,"journal":{"name":"2015 IEEE International Conference on Autonomic Computing","volume":"10 1","pages":"261-266"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Autonomic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAC.2015.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Traffic experts try to optimise the signalisation of traffic light controllers during design-time based on historic traffic flow data. Traffic exhibits dynamic behaviour. Due to changing traffic demands, new and flexible traffic management systems are needed that optimise themselves during runtime. Organic Traffic Control is such a decentralised, self-organising system that adapts the green times of traffic lights to the current traffic conditions. Forecasts of future traffic conditions may result in a faster adaptation, higher robustness and flexibility. The combination of several forecasting techniques leads to fewer forecast errors. This paper presents three novel combination strategies from the machine learning domain using an Artificial Neural Network, Historic Load Curves and an Extended Classifier System.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习运行时预测技术的动态重组策略
交通专家试图根据历史交通流量数据,在设计期间优化交通灯控制器的信号。流量表现为动态行为。由于不断变化的交通需求,需要新的灵活的交通管理系统在运行时进行优化。有机交通控制是这样一个分散的、自组织的系统,它可以根据当前的交通状况调整交通灯的绿灯时间。对未来交通状况的预测可以使系统更快地适应环境,提高系统的稳健性和灵活性。几种预测技术的结合可以减少预测误差。本文利用人工神经网络、历史负荷曲线和扩展分类器系统,提出了机器学习领域的三种新型组合策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Control-Based Approach to Autonomic Performance Management in Computing Systems Trace Analysis for Fault Detection in Application Servers A Programming System for Autonomic Self-Managing Applications A Taxonomy for Self-∗ Properties in Decentralized Autonomic Computing Transparent Autonomization in Composite Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1