P. Guo, Quyen H. Ly, W. Saw, K. Lim, P. Ashman, G. Nathan
{"title":"A technical assessment of pneumatic conveying of solids for a high temperature particle receiver","authors":"P. Guo, Quyen H. Ly, W. Saw, K. Lim, P. Ashman, G. Nathan","doi":"10.1063/1.5117537","DOIUrl":null,"url":null,"abstract":"A technical assessment of pneumatic conveying of solids at various operating temperatures for a high temperature solar particle receiver is reported. The power consumption of the conveying system was determined from a calculation of the pressure drop in the conveying pipes. The enthalpy loss of the transported particles was estimated from an energy balance and the heat losses through the wall. The power consumption of the pneumatic conveying system was found to decrease significantly with an increase in conveying temperature and to be less for a dense phase conveying system that for a skip hoist conveyor, where the solid input temperature is higher than 150 °C. The equivalent threshold temperature is 400 °C for a dilute phase conveying system. Nevertheless, including the enthalpy loss of the particles caused by the increases in both mechanical energy and gas enthalpy, the dense phase conveying is more energy efficient than skip hoist if the solid input temperature is higher than 450 °C while the dilute phase conveying always consumes more energy than skip hoist, under the studied conditions.A technical assessment of pneumatic conveying of solids at various operating temperatures for a high temperature solar particle receiver is reported. The power consumption of the conveying system was determined from a calculation of the pressure drop in the conveying pipes. The enthalpy loss of the transported particles was estimated from an energy balance and the heat losses through the wall. The power consumption of the pneumatic conveying system was found to decrease significantly with an increase in conveying temperature and to be less for a dense phase conveying system that for a skip hoist conveyor, where the solid input temperature is higher than 150 °C. The equivalent threshold temperature is 400 °C for a dilute phase conveying system. Nevertheless, including the enthalpy loss of the particles caused by the increases in both mechanical energy and gas enthalpy, the dense phase conveying is more energy efficient than skip hoist if the solid input temperature is higher than 450 °C while the dilute ph...","PeriodicalId":21790,"journal":{"name":"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5117537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A technical assessment of pneumatic conveying of solids at various operating temperatures for a high temperature solar particle receiver is reported. The power consumption of the conveying system was determined from a calculation of the pressure drop in the conveying pipes. The enthalpy loss of the transported particles was estimated from an energy balance and the heat losses through the wall. The power consumption of the pneumatic conveying system was found to decrease significantly with an increase in conveying temperature and to be less for a dense phase conveying system that for a skip hoist conveyor, where the solid input temperature is higher than 150 °C. The equivalent threshold temperature is 400 °C for a dilute phase conveying system. Nevertheless, including the enthalpy loss of the particles caused by the increases in both mechanical energy and gas enthalpy, the dense phase conveying is more energy efficient than skip hoist if the solid input temperature is higher than 450 °C while the dilute phase conveying always consumes more energy than skip hoist, under the studied conditions.A technical assessment of pneumatic conveying of solids at various operating temperatures for a high temperature solar particle receiver is reported. The power consumption of the conveying system was determined from a calculation of the pressure drop in the conveying pipes. The enthalpy loss of the transported particles was estimated from an energy balance and the heat losses through the wall. The power consumption of the pneumatic conveying system was found to decrease significantly with an increase in conveying temperature and to be less for a dense phase conveying system that for a skip hoist conveyor, where the solid input temperature is higher than 150 °C. The equivalent threshold temperature is 400 °C for a dilute phase conveying system. Nevertheless, including the enthalpy loss of the particles caused by the increases in both mechanical energy and gas enthalpy, the dense phase conveying is more energy efficient than skip hoist if the solid input temperature is higher than 450 °C while the dilute ph...