{"title":"Study on Regenerative Braking Control Strategy for the Dual-axle Distributed Drive Electric Vehicles","authors":"Zeyu Chen, Yifeng Zhao, X. Cai, Zhen Wang","doi":"10.12783/dteees/iceee2019/31727","DOIUrl":null,"url":null,"abstract":"Regenerative braking technology, as a remarkable feature of electric vehicles, can effectively alleviate the driver’s operation burden and extend the driving range. In this paper, a novel regenerative braking strategy is proposed for electric vehicles. First, the brake force distribution relationship of front and rear wheels is studied for enough brake safety. Then an optimal algorithm based on multiple constraints and brake safety is proposed to achieve maximum recover energy. Finally, comparing with the series ECE regulation strategy, the proposed strategy is demonstrated that the enables achieve maximum energy recovery under different driving cycles. Energy recovery rate of the proposed algorithm is improved by 8.40%, 3.84% and 4.09%.","PeriodicalId":11324,"journal":{"name":"DEStech Transactions on Environment, Energy and Earth Sciences","volume":"160 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DEStech Transactions on Environment, Energy and Earth Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12783/dteees/iceee2019/31727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Regenerative braking technology, as a remarkable feature of electric vehicles, can effectively alleviate the driver’s operation burden and extend the driving range. In this paper, a novel regenerative braking strategy is proposed for electric vehicles. First, the brake force distribution relationship of front and rear wheels is studied for enough brake safety. Then an optimal algorithm based on multiple constraints and brake safety is proposed to achieve maximum recover energy. Finally, comparing with the series ECE regulation strategy, the proposed strategy is demonstrated that the enables achieve maximum energy recovery under different driving cycles. Energy recovery rate of the proposed algorithm is improved by 8.40%, 3.84% and 4.09%.