Improving reinforcement learning algorithms: Towards optimal learning rate policies

IF 1.6 3区 经济学 Q3 BUSINESS, FINANCE Mathematical Finance Pub Date : 2023-02-26 DOI:10.1111/mafi.12378
Othmane Mounjid, Charles-Albert Lehalle
{"title":"Improving reinforcement learning algorithms: Towards optimal learning rate policies","authors":"Othmane Mounjid,&nbsp;Charles-Albert Lehalle","doi":"10.1111/mafi.12378","DOIUrl":null,"url":null,"abstract":"<p>This paper shows how to use results of statistical learning theory and stochastic algorithms to have a better understanding of the convergence of Reinforcement Learning (RL) once it is formulated as a fixed point problem. This can be used to propose improvement of RL learning rates. First, our analysis shows that the classical asymptotic convergence rate <math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>(</mo>\n <mn>1</mn>\n <mo>/</mo>\n <msqrt>\n <mi>N</mi>\n </msqrt>\n <mo>)</mo>\n </mrow>\n <annotation>$O(1/\\sqrt {N})$</annotation>\n </semantics></math> is pessimistic and can be replaced by <math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>(</mo>\n <msup>\n <mrow>\n <mo>(</mo>\n <mi>log</mi>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n <mo>/</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n <mi>β</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$O((\\log (N)/N)^{\\beta })$</annotation>\n </semantics></math> with <math>\n <semantics>\n <mrow>\n <mfrac>\n <mn>1</mn>\n <mn>2</mn>\n </mfrac>\n <mo>≤</mo>\n <mi>β</mi>\n <mo>≤</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\frac{1}{2}\\le \\beta \\le 1$</annotation>\n </semantics></math>, and <math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math> the number of iterations. Second, we propose a dynamic optimal policy for the choice of the learning rate used in RL. We decompose our policy into two interacting levels: the inner and outer levels. In the inner level, we present the PASS algorithm (for “PAst Sign Search”) which, based on a predefined sequence of learning rates, constructs a new sequence for which the error decreases faster. The convergence of PASS is proved and error bounds are established. In the outer level, we propose an optimal methodology for the selection of the predefined sequence. Third, we show empirically that our selection methodology of the learning rate outperforms significantly standard algorithms used in RL for the three following applications: the estimation of a drift, the optimal placement of limit orders, and the optimal execution of a large number of shares.</p>","PeriodicalId":49867,"journal":{"name":"Mathematical Finance","volume":"34 2","pages":"588-621"},"PeriodicalIF":1.6000,"publicationDate":"2023-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mafi.12378","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Finance","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12378","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper shows how to use results of statistical learning theory and stochastic algorithms to have a better understanding of the convergence of Reinforcement Learning (RL) once it is formulated as a fixed point problem. This can be used to propose improvement of RL learning rates. First, our analysis shows that the classical asymptotic convergence rate O ( 1 / N ) $O(1/\sqrt {N})$ is pessimistic and can be replaced by O ( ( log ( N ) / N ) β ) $O((\log (N)/N)^{\beta })$ with 1 2 β 1 $\frac{1}{2}\le \beta \le 1$ , and N $N$ the number of iterations. Second, we propose a dynamic optimal policy for the choice of the learning rate used in RL. We decompose our policy into two interacting levels: the inner and outer levels. In the inner level, we present the PASS algorithm (for “PAst Sign Search”) which, based on a predefined sequence of learning rates, constructs a new sequence for which the error decreases faster. The convergence of PASS is proved and error bounds are established. In the outer level, we propose an optimal methodology for the selection of the predefined sequence. Third, we show empirically that our selection methodology of the learning rate outperforms significantly standard algorithms used in RL for the three following applications: the estimation of a drift, the optimal placement of limit orders, and the optimal execution of a large number of shares.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进强化学习算法:实现最佳学习率政策
本文展示了如何利用统计学习理论和随机算法的结果,在强化学习(RL)被表述为定点问题后,更好地理解其收敛性。这可以用来提出提高 RL 学习率的建议。首先,我们的分析表明,经典的渐近收敛率 O ( 1 / N ) $O(1/sqrt {N})$ 是悲观的,可以用 O ( ( log ( N ) / N ) β ) $O((\log (N)/N)^{\beta })$ 来代替,其中 1 2 ≤ β ≤ 1 $\frac{1}{2}\le \beta \le 1$ ,N $N$ 为迭代次数。其次,我们为 RL 中学习率的选择提出了一种动态优化策略。我们将政策分解为两个相互作用的层次:内层和外层。在内部层面,我们提出了 PASS 算法(即 "PAst Sign Search"),该算法基于预定义的学习率序列,构建误差下降更快的新序列。我们证明了 PASS 算法的收敛性,并确定了误差边界。在外层,我们提出了选择预定义序列的最优方法。第三,我们通过实证证明,在以下三个应用中,我们的学习率选择方法明显优于 RL 中使用的标准算法:漂移估计、限价订单的优化布局以及大量股票的优化执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical Finance
Mathematical Finance 数学-数学跨学科应用
CiteScore
4.10
自引率
6.20%
发文量
27
审稿时长
>12 weeks
期刊介绍: Mathematical Finance seeks to publish original research articles focused on the development and application of novel mathematical and statistical methods for the analysis of financial problems. The journal welcomes contributions on new statistical methods for the analysis of financial problems. Empirical results will be appropriate to the extent that they illustrate a statistical technique, validate a model or provide insight into a financial problem. Papers whose main contribution rests on empirical results derived with standard approaches will not be considered.
期刊最新文献
Issue Information Designing stablecoins Systemic risk in markets with multiple central counterparties Joint calibration to SPX and VIX options with signature‐based models Dynamic equilibrium with insider information and general uninformed agent utility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1