Sampling, feasibility, and priors in Bayesian estimation

A. Chorin, F. Lu, Robert N. Miller, M. Morzfeld, Xuemin Tu
{"title":"Sampling, feasibility, and priors in Bayesian estimation","authors":"A. Chorin, F. Lu, Robert N. Miller, M. Morzfeld, Xuemin Tu","doi":"10.3934/DCDS.2016.8.4227","DOIUrl":null,"url":null,"abstract":"Importance sampling algorithms are discussed in detail, with an emphasis on implicit sampling, and applied to data assimilation via particle filters. Implicit sampling makes it possible to use the data to find high-probability samples at relatively low cost, making the assimilation more efficient. A new analysis of the feasibility of data assimilation is presented, showing in detail why feasibility depends on the Frobenius norm of the covariance matrix of the noise and not on the number of variables. A discussion of the convergence of particular particle filters follows. A major open problem in numerical data assimilation is the determination of appropriate priors, a progress report on recent work on this problem is given. The analysis highlights the need for a careful attention both to the data and to the physics in data assimilation problems.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/DCDS.2016.8.4227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Importance sampling algorithms are discussed in detail, with an emphasis on implicit sampling, and applied to data assimilation via particle filters. Implicit sampling makes it possible to use the data to find high-probability samples at relatively low cost, making the assimilation more efficient. A new analysis of the feasibility of data assimilation is presented, showing in detail why feasibility depends on the Frobenius norm of the covariance matrix of the noise and not on the number of variables. A discussion of the convergence of particular particle filters follows. A major open problem in numerical data assimilation is the determination of appropriate priors, a progress report on recent work on this problem is given. The analysis highlights the need for a careful attention both to the data and to the physics in data assimilation problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抽样,可行性和先验贝叶斯估计
详细讨论了重要采样算法,重点讨论了隐式采样算法,并将其应用于粒子滤波器的数据同化。隐式抽样使得利用数据以相对较低的成本找到高概率样本成为可能,使同化更有效。对数据同化的可行性进行了新的分析,详细说明了为什么可行性取决于噪声协方差矩阵的Frobenius范数而不是变量的数量。下面讨论了特定粒子滤波器的收敛性。数值资料同化的一个主要问题是确定合适的先验,本文给出了关于这一问题的最新研究进展报告。分析强调,在数据同化问题中,需要对数据和物理都进行仔细的注意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Double Happiness: Enhancing the Coupled Gains of L-lag Coupling via Control Variates. SCOREDRIVENMODELS.JL: A JULIA PACKAGE FOR GENERALIZED AUTOREGRESSIVE SCORE MODELS Simple conditions for convergence of sequential Monte Carlo genealogies with applications Increasing the efficiency of Sequential Monte Carlo samplers through the use of approximately optimal L-kernels Particle Methods for Stochastic Differential Equation Mixed Effects Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1