A Rule-Based Method to Locate the Bounds of Neural Networks

I. Tsoulos, A. Tzallas, E. Karvounis
{"title":"A Rule-Based Method to Locate the Bounds of Neural Networks","authors":"I. Tsoulos, A. Tzallas, E. Karvounis","doi":"10.3390/knowledge2030024","DOIUrl":null,"url":null,"abstract":"An advanced method of training artificial neural networks is presented here which aims to identify the optimal interval for the initialization and training of artificial neural networks. The location of the optimal interval is performed using rules evolving from a genetic algorithm. The method has two phases: in the first phase, an attempt is made to locate the optimal interval, and in the second phase, the artificial neural network is initialized and trained in this interval using a method of global optimization, such as a genetic algorithm. The method has been tested on a range of categorization and function learning data and the experimental results are extremely encouraging.","PeriodicalId":74770,"journal":{"name":"Science of aging knowledge environment : SAGE KE","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of aging knowledge environment : SAGE KE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/knowledge2030024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An advanced method of training artificial neural networks is presented here which aims to identify the optimal interval for the initialization and training of artificial neural networks. The location of the optimal interval is performed using rules evolving from a genetic algorithm. The method has two phases: in the first phase, an attempt is made to locate the optimal interval, and in the second phase, the artificial neural network is initialized and trained in this interval using a method of global optimization, such as a genetic algorithm. The method has been tested on a range of categorization and function learning data and the experimental results are extremely encouraging.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于规则的神经网络边界定位方法
提出了一种先进的人工神经网络训练方法,该方法旨在确定人工神经网络初始化和训练的最优区间。最优区间的定位使用从遗传算法演化而来的规则。该方法分为两个阶段:第一阶段,尝试找到最优区间;第二阶段,利用遗传算法等全局寻优方法在该区间内初始化并训练人工神经网络。该方法已在一系列分类和函数学习数据上进行了测试,实验结果非常令人鼓舞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cognitive Factors Affecting the Manufacturing Optimization Skills of Rural Indian BPO Workers Enhancing Landfill Monitoring and Assessment: A Proposal Combining GIS-Based Analytic Hierarchy Processes and Fuzzy Artificial Intelligence Embedding Sustainability Justice in Greek Secondary Curricula through the DeCoRe Plus Methodology KRITERIA PEMILIHAN PASANGAN HIDUP DALAM PEMBENTUKAN KELUARGA HARMONIS EFEKTIFITAS PERENCANAAN PEMBANGUNAN DAERAH DENGAN PENDEKATAN PARTISIPASI MASYARAKAT DESA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1