Information entropy based public opinion maximization in social networks

IF 0.5 Q4 TELECOMMUNICATIONS Internet Technology Letters Pub Date : 2023-02-01 DOI:10.1002/itl2.409
Xiaohua Li
{"title":"Information entropy based public opinion maximization in social networks","authors":"Xiaohua Li","doi":"10.1002/itl2.409","DOIUrl":null,"url":null,"abstract":"<p>Aiming at addressing the public opinion maximization problem in social networks with more intelligence, we propose an information entropy-based method. First of all, considering the different information carried by different types of social network nodes and the different information transmitted by different social nodes, the definitions of participation entropy and interactive entropy are proposed. Then, the influence weight between public opinion propagation nodes is calculated, and then the global influence of nodes is calculated based on the linear threshold model. Finally, the seed set is selected according to the marginal gain of the social nodes. The experimental results show that the proposed algorithm outperforms the other state-of-the-art methods.</p>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at addressing the public opinion maximization problem in social networks with more intelligence, we propose an information entropy-based method. First of all, considering the different information carried by different types of social network nodes and the different information transmitted by different social nodes, the definitions of participation entropy and interactive entropy are proposed. Then, the influence weight between public opinion propagation nodes is calculated, and then the global influence of nodes is calculated based on the linear threshold model. Finally, the seed set is selected according to the marginal gain of the social nodes. The experimental results show that the proposed algorithm outperforms the other state-of-the-art methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于信息熵的社会网络舆论最大化
针对社交网络中舆情最大化问题,提出了一种基于信息熵的方法。首先,考虑到不同类型的社会网络节点所携带的信息不同,以及不同类型的社会网络节点所传递的信息不同,提出了参与熵和交互熵的定义。然后,计算舆情传播节点之间的影响力权重,然后基于线性阈值模型计算节点的全局影响力。最后,根据社会节点的边际增益选择种子集。实验结果表明,本文提出的算法优于其他最先进的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
Fairness-Aware Comparison of PD-NOMA and OMA Under Max-Min, Proportional, and Round-Robin Scheduling Intelligent Green Resource Management for Blockchain-Powered IoT Networks Through Deep Reinforcement Learning Collaborative Control of Overcharging-Swapping-Wireless Charging Systems via Industrial IoT for Extreme Cold Regions Quantum-Enhanced Federated Learning Architecture for Privacy-Preserving Smart Grid IoT Security Machine Learning-Driven Security for Malware Detection in Wireless Android Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1