Fuzzy Fine-Grained Code-History Analysis

Francisco Servant, James A. Jones
{"title":"Fuzzy Fine-Grained Code-History Analysis","authors":"Francisco Servant, James A. Jones","doi":"10.1109/ICSE.2017.74","DOIUrl":null,"url":null,"abstract":"Existing software-history techniques represent source-code evolution as an absolute and unambiguous mapping of lines of code in prior revisions to lines of code in subsequent revisions. However, the true evolutionary lineage of a line of code is often complex, subjective, and ambiguous. As such, existing techniques are predisposed to, both, overestimate and underestimate true evolution lineage. In this paper, we seek to address these issues by providing a more expressive model of code evolution, the fuzzy history graph, by representing code lineage as a continuous (i.e., fuzzy) metric rather than a discrete (i.e., absolute) one. Using this more descriptive model, we additionally provide a novel multi-revision code-history analysis — fuzzy history slicing. In our experiments over three real-world software systems, we found that the fuzzy history graph provides a tunable balance of precision and recall, and an overall improved accuracy over existing code-evolution models. Furthermore, we found that the use of such a fuzzy model of history provided improved accuracy for code-history analysis tasks.","PeriodicalId":6505,"journal":{"name":"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)","volume":"24 1","pages":"746-757"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE.2017.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Existing software-history techniques represent source-code evolution as an absolute and unambiguous mapping of lines of code in prior revisions to lines of code in subsequent revisions. However, the true evolutionary lineage of a line of code is often complex, subjective, and ambiguous. As such, existing techniques are predisposed to, both, overestimate and underestimate true evolution lineage. In this paper, we seek to address these issues by providing a more expressive model of code evolution, the fuzzy history graph, by representing code lineage as a continuous (i.e., fuzzy) metric rather than a discrete (i.e., absolute) one. Using this more descriptive model, we additionally provide a novel multi-revision code-history analysis — fuzzy history slicing. In our experiments over three real-world software systems, we found that the fuzzy history graph provides a tunable balance of precision and recall, and an overall improved accuracy over existing code-evolution models. Furthermore, we found that the use of such a fuzzy model of history provided improved accuracy for code-history analysis tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模糊细粒度代码历史分析
现有的软件历史技术将源代码演变表示为先前版本中的代码行到后续版本中的代码行的绝对且明确的映射。然而,一行代码的真正进化谱系通常是复杂的、主观的和模糊的。因此,现有的技术倾向于高估和低估真正的进化谱系。在本文中,我们试图通过提供一个更具表现力的代码进化模型来解决这些问题,模糊历史图,通过将代码谱系表示为连续的(即模糊的)度量,而不是离散的(即绝对的)度量。利用这个更具描述性的模型,我们还提供了一种新的多版本代码历史分析-模糊历史切片。在我们对三个真实软件系统的实验中,我们发现模糊历史图提供了精度和召回率的可调平衡,并且在现有代码进化模型上总体上提高了准确性。此外,我们发现使用这种历史模糊模型可以提高代码历史分析任务的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Unpacking of Android Apps Symbolic Model Extraction for Web Application Verification On Cross-Stack Configuration Errors Syntactic and Semantic Differencing for Combinatorial Models of Test Designs Fuzzy Fine-Grained Code-History Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1