N. Vidakis, M. Petousis, M. Kourinou, E. Velidakis, N. Mountakis, P. Fischer-Griffiths, S. Grammatikos, L. Tzounis
{"title":"Additive manufacturing of multifunctional polylactic acid (PLA)—multiwalled carbon nanotubes (MWCNTs) nanocomposites","authors":"N. Vidakis, M. Petousis, M. Kourinou, E. Velidakis, N. Mountakis, P. Fischer-Griffiths, S. Grammatikos, L. Tzounis","doi":"10.1080/20550324.2021.2000231","DOIUrl":null,"url":null,"abstract":"Abstract In this work, an industrially scalable method was developed for the preparation of multifunctional nanocomposite filaments. Polylactic Acid (PLA) polymer matrix was enriched with Multi Wall Carbon Nanotubes (MWCNT) at various concentrations, to fabricate 3D-printed parts by the Fused Filament Fabrication (FFF) technology. The effect of the nanofiller loading at the mechanical, thermal, electrical, thermomechanical, and antibacterial performance of the novel nanocomposites fabricated in this work was investigated. The filler loading of 5 wt.% was also tested to reveal its electrothermal Joule heating performance. The antibacterial properties of the nanocomposites were examined through a screening process, against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). For loadings of 1 wt.% and higher the mechanical properties were significantly improved. The 5 wt.% loaning showed measurable antibacterial performance. The nanocomposites prepared herein can be characterized as multifunctional materials, suitable for various industrial applications, such as sensors fabrication, health monitoring devices, etc. Graphical Abstract","PeriodicalId":18872,"journal":{"name":"Nanocomposites","volume":"29 1","pages":"184 - 199"},"PeriodicalIF":4.2000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanocomposites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/20550324.2021.2000231","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 35
Abstract
Abstract In this work, an industrially scalable method was developed for the preparation of multifunctional nanocomposite filaments. Polylactic Acid (PLA) polymer matrix was enriched with Multi Wall Carbon Nanotubes (MWCNT) at various concentrations, to fabricate 3D-printed parts by the Fused Filament Fabrication (FFF) technology. The effect of the nanofiller loading at the mechanical, thermal, electrical, thermomechanical, and antibacterial performance of the novel nanocomposites fabricated in this work was investigated. The filler loading of 5 wt.% was also tested to reveal its electrothermal Joule heating performance. The antibacterial properties of the nanocomposites were examined through a screening process, against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). For loadings of 1 wt.% and higher the mechanical properties were significantly improved. The 5 wt.% loaning showed measurable antibacterial performance. The nanocomposites prepared herein can be characterized as multifunctional materials, suitable for various industrial applications, such as sensors fabrication, health monitoring devices, etc. Graphical Abstract