Pub Date : 2023-12-29DOI: 10.1080/20550324.2023.2297613
Mousab Mirghani
The photocatalytic removal of toxic heavy metals using titanium dioxide nanoparticles is an emerging technology for environmental remediation. Pure and Mo-doped TiO2 nanoparticles were synthesized ...
{"title":"Synthesis and characterizations of molybdenum-doped titanium dioxide nanoparticles for photocatalytic removal of chromium (VI) from aqueous solutions","authors":"Mousab Mirghani","doi":"10.1080/20550324.2023.2297613","DOIUrl":"https://doi.org/10.1080/20550324.2023.2297613","url":null,"abstract":"The photocatalytic removal of toxic heavy metals using titanium dioxide nanoparticles is an emerging technology for environmental remediation. Pure and Mo-doped TiO2 nanoparticles were synthesized ...","PeriodicalId":18872,"journal":{"name":"Nanocomposites","volume":"1 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139068970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-12DOI: 10.1080/20550324.2023.2292878
Ying Li, Kaiyou Wu, Yudi Li, Siren Guo, Linlin Zhao, Yifan Guo, Wei Feng, Xulin Yang, Pan Wang, Kui Li, David Hui, Zuowan Zhou
Intelligent electromagnetic interference (EMI) shielding materials with adaptively adjustable structure and performance under external stimuli hold great potential in developing new generation of i...
{"title":"Recent progress in caron-based stimulus-responsive electromagnetic interference shielding materials","authors":"Ying Li, Kaiyou Wu, Yudi Li, Siren Guo, Linlin Zhao, Yifan Guo, Wei Feng, Xulin Yang, Pan Wang, Kui Li, David Hui, Zuowan Zhou","doi":"10.1080/20550324.2023.2292878","DOIUrl":"https://doi.org/10.1080/20550324.2023.2292878","url":null,"abstract":"Intelligent electromagnetic interference (EMI) shielding materials with adaptively adjustable structure and performance under external stimuli hold great potential in developing new generation of i...","PeriodicalId":18872,"journal":{"name":"Nanocomposites","volume":"18 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138575728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In our investigation of poly(vinylidene fluoride) (PVDF) films embedded with Au–BaTiO3 (AuBT) nanoparticles, we noted a synergistic improvement in both thermal stability and dielectric properties. ...
{"title":"Synergistic Enhancement of Thermal and Dielectric Properties in PVDF Films with Au-BaTiO3 Hybrid Nanoparticles","authors":"Kaniknun Sreejivungsa, Pornsawan Kum–onsa, Prasit Thongbai","doi":"10.1080/20550324.2023.2291622","DOIUrl":"https://doi.org/10.1080/20550324.2023.2291622","url":null,"abstract":"In our investigation of poly(vinylidene fluoride) (PVDF) films embedded with Au–BaTiO3 (AuBT) nanoparticles, we noted a synergistic improvement in both thermal stability and dielectric properties. ...","PeriodicalId":18872,"journal":{"name":"Nanocomposites","volume":"251 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138553168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-05DOI: 10.1080/20550324.2023.2291619
Muhammad Yaseen, Muhammad Arif Khan Khattak, Abbas Khan, Shaista Bibi, Mohamed Bououdina, Muhammad Usman, Niaz Ali Khan, Azhar Ali Ayaz Pirzado, Rasha A. Abumousa, Muhammad Humayun
Electrochromic (EC) thin films have received considerable attention due to their potential applications in various fields such as smart windows, electrochromic displays, and energy storage devices....
{"title":"State-of-the-Art Electrochromic Thin Films Devices, Fabrication Techniques and Applications: A Review","authors":"Muhammad Yaseen, Muhammad Arif Khan Khattak, Abbas Khan, Shaista Bibi, Mohamed Bououdina, Muhammad Usman, Niaz Ali Khan, Azhar Ali Ayaz Pirzado, Rasha A. Abumousa, Muhammad Humayun","doi":"10.1080/20550324.2023.2291619","DOIUrl":"https://doi.org/10.1080/20550324.2023.2291619","url":null,"abstract":"Electrochromic (EC) thin films have received considerable attention due to their potential applications in various fields such as smart windows, electrochromic displays, and energy storage devices....","PeriodicalId":18872,"journal":{"name":"Nanocomposites","volume":"29 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138547268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Structural health monitoring (SHM) of brittle structures will require versatile sensing instrumentation that can transmitting transient loadings into rapid electrical responses. This research inves...
{"title":"Scalable and Passive Carbon Nanotube Thin-film Sensor for Detecting Micro-strains and Potential Impact Damage in Fiber-Reinforced Composite Materials","authors":"Joshua DeGraff, Pierre-Jean Cottinet, Minh-Quyen Cottinet, Tarik Dickens, Kunal Joshi, Marquese Pollard, Grace Johnson, Anghea Dolisca, Richard Liang","doi":"10.1080/20550324.2023.2291625","DOIUrl":"https://doi.org/10.1080/20550324.2023.2291625","url":null,"abstract":"Structural health monitoring (SHM) of brittle structures will require versatile sensing instrumentation that can transmitting transient loadings into rapid electrical responses. This research inves...","PeriodicalId":18872,"journal":{"name":"Nanocomposites","volume":"77 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138532843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-04DOI: 10.1080/20550324.2023.2291626
Hao Wang, Jun Wang, Jie Tao, Kai Jin, Yuxin Li
Although MXene sheets are highly conductive, it is still challenging to prepare MXene complex functional materials for flexible electronics by simple and effective methods. In 3D printing, especial...
{"title":"3D Printing and Freeze Casting Hierarchical MXene Pressure Sensor","authors":"Hao Wang, Jun Wang, Jie Tao, Kai Jin, Yuxin Li","doi":"10.1080/20550324.2023.2291626","DOIUrl":"https://doi.org/10.1080/20550324.2023.2291626","url":null,"abstract":"Although MXene sheets are highly conductive, it is still challenging to prepare MXene complex functional materials for flexible electronics by simple and effective methods. In 3D printing, especial...","PeriodicalId":18872,"journal":{"name":"Nanocomposites","volume":"11 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138532886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01DOI: 10.1080/20550324.2023.2286803
Hanan K. Alzahrani, Dina F. Katowah
In this investigation, we employed chemical oxidative copolymerization techniques to produce Cross-linked Polyaniline/chitosan-graphene oxide-oxidized single-wall carbon nanotubes (Cross PANI/Chito...
{"title":"Fabrication of network nanocomposite of Polyaniline coating chitosan-graphene oxide-functionalized carbon nanotube and its efficacy in removing dyes from aqueous solution","authors":"Hanan K. Alzahrani, Dina F. Katowah","doi":"10.1080/20550324.2023.2286803","DOIUrl":"https://doi.org/10.1080/20550324.2023.2286803","url":null,"abstract":"In this investigation, we employed chemical oxidative copolymerization techniques to produce Cross-linked Polyaniline/chitosan-graphene oxide-oxidized single-wall carbon nanotubes (Cross PANI/Chito...","PeriodicalId":18872,"journal":{"name":"Nanocomposites","volume":"4 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138532840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-22DOI: 10.1080/20550324.2023.2285306
Supattra Klayya, Patcharee Pripdeevech, Han Zhang, Emiliano Bilotti, Nattakan Soykeabkaew
Nanofibrillated cellulose (NFC) has been successfully esterified by lactic acid (LA) in the presence of HCl catalyst in an aqueous medium using a simple microwave heating process. The degree of sub...
{"title":"Improved dispersibility of nanofibrillated cellulose via simple microwave-assisted esterification","authors":"Supattra Klayya, Patcharee Pripdeevech, Han Zhang, Emiliano Bilotti, Nattakan Soykeabkaew","doi":"10.1080/20550324.2023.2285306","DOIUrl":"https://doi.org/10.1080/20550324.2023.2285306","url":null,"abstract":"Nanofibrillated cellulose (NFC) has been successfully esterified by lactic acid (LA) in the presence of HCl catalyst in an aqueous medium using a simple microwave heating process. The degree of sub...","PeriodicalId":18872,"journal":{"name":"Nanocomposites","volume":"7 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138532842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chitosan, a biopolymer known for its biocompatibility, biodegradability, and chemical adaptability, has attracted significant attention in scientific research. Chitosan-metal nanocomposites represe...
{"title":"Chitosan chelated Fe3+ nanocomposite for enhanced biomedical and environmental applications","authors":"Rutuja Gumathannavar, Anil Thormothe, Pankhudi Bhutada, Mandar M. Shirolkar, Atul Kulkarni, Santosh Koratkar","doi":"10.1080/20550324.2023.2281833","DOIUrl":"https://doi.org/10.1080/20550324.2023.2281833","url":null,"abstract":"Chitosan, a biopolymer known for its biocompatibility, biodegradability, and chemical adaptability, has attracted significant attention in scientific research. Chitosan-metal nanocomposites represe...","PeriodicalId":18872,"journal":{"name":"Nanocomposites","volume":"58 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138532841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-27DOI: 10.1080/20550324.2023.2268312
Zheng Li, Tong Li, Zhuoyu Song, Ke Zhang, Bo Wang
Poly (ether-ether-ketone) (PEEK) is one of the most promising engineering plastics in aerospace engineering because of their reliable mechanical properties under various conditions. However, next-generation engineering plastics also call for more comprehensive outputs, such as higher thermal conductivity and antiwear performances. Boron Nitride Nanotubes (BNNT) have been proven to have outstanding physical properties as additives to the resin of the composites. In this article, the influence of BNNT additives on the PEEK resin is studied to provide a more insightful understanding of the development of BNNT-reinforced engineering plastics in the future. It has been found that the interfacial shear strength (IFSS) between BNNT and PEEK is 151% higher than carbon nanotube reinforcements., and amino groups (–NH2) modified BNNT can further improve the IFSS value by 14%. This mechanical improvement is further evaluated, and the molecular mechanisms are explained with an atomistic resolution.
{"title":"Mechanical properties of boron nitride nanotube reinforced PEEK composite: a molecular dynamics study","authors":"Zheng Li, Tong Li, Zhuoyu Song, Ke Zhang, Bo Wang","doi":"10.1080/20550324.2023.2268312","DOIUrl":"https://doi.org/10.1080/20550324.2023.2268312","url":null,"abstract":"Poly (ether-ether-ketone) (PEEK) is one of the most promising engineering plastics in aerospace engineering because of their reliable mechanical properties under various conditions. However, next-generation engineering plastics also call for more comprehensive outputs, such as higher thermal conductivity and antiwear performances. Boron Nitride Nanotubes (BNNT) have been proven to have outstanding physical properties as additives to the resin of the composites. In this article, the influence of BNNT additives on the PEEK resin is studied to provide a more insightful understanding of the development of BNNT-reinforced engineering plastics in the future. It has been found that the interfacial shear strength (IFSS) between BNNT and PEEK is 151% higher than carbon nanotube reinforcements., and amino groups (–NH2) modified BNNT can further improve the IFSS value by 14%. This mechanical improvement is further evaluated, and the molecular mechanisms are explained with an atomistic resolution.","PeriodicalId":18872,"journal":{"name":"Nanocomposites","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136235127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}