Multivariate-from-Univariate MCMC Sampler: R Package MfUSampler

A. S. Mahani, M. Sharabiani
{"title":"Multivariate-from-Univariate MCMC Sampler: R Package MfUSampler","authors":"A. S. Mahani, M. Sharabiani","doi":"10.18637/JSS.V078.C01","DOIUrl":null,"url":null,"abstract":"The R package MfUSampler provides Monte Carlo Markov Chain machinery for generating samples from multivariate probability distributions using univariate sampling algorithms such as Slice Sampler and Adaptive Rejection Sampler. The sampler function performs a full cycle of univariate sampling steps, one coordinate at a time. In each step, the latest sample values obtained for other coordinates are used to form the conditional distributions. The concept is an extension of Gibbs sampling where each step involves, not an independent sample from the conditional distribution, but a Markov transition for which the conditional distribution is invariant. The software relies on proportionality of conditional distributions to the joint distribution to implement a thin wrapper for producing conditionals. Examples illustrate basic usage as well as methods for improving performance. By encapsulating the multivariate-from-univariate logic, MfUSampler provides a reliable library for rapid prototyping of custom Bayesian models while allowing for incremental performance optimizations such as utilization of conjugacy, conditional independence, and porting function evaluations to compiled languages.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18637/JSS.V078.C01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The R package MfUSampler provides Monte Carlo Markov Chain machinery for generating samples from multivariate probability distributions using univariate sampling algorithms such as Slice Sampler and Adaptive Rejection Sampler. The sampler function performs a full cycle of univariate sampling steps, one coordinate at a time. In each step, the latest sample values obtained for other coordinates are used to form the conditional distributions. The concept is an extension of Gibbs sampling where each step involves, not an independent sample from the conditional distribution, but a Markov transition for which the conditional distribution is invariant. The software relies on proportionality of conditional distributions to the joint distribution to implement a thin wrapper for producing conditionals. Examples illustrate basic usage as well as methods for improving performance. By encapsulating the multivariate-from-univariate logic, MfUSampler provides a reliable library for rapid prototyping of custom Bayesian models while allowing for incremental performance optimizations such as utilization of conjugacy, conditional independence, and porting function evaluations to compiled languages.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
由单变量多变量MCMC采样器:R封装MfUSampler
R包MfUSampler提供蒙特卡罗马尔可夫链机制,用于使用单变量采样算法(如Slice Sampler和Adaptive Rejection Sampler)从多变量概率分布生成样本。采样器函数执行单变量采样步骤的完整周期,每次一个坐标。在每一步中,使用对其他坐标获得的最新样本值来形成条件分布。这个概念是吉布斯抽样的扩展,其中每一步涉及的不是来自条件分布的独立样本,而是一个条件分布不变的马尔可夫转移。该软件依赖于条件分布与联合分布的比例性来实现用于生成条件的薄包装器。示例说明了基本用法以及提高性能的方法。通过封装从单变量到多变量的逻辑,MfUSampler为自定义贝叶斯模型的快速原型设计提供了一个可靠的库,同时允许增量性能优化,例如利用共轭、条件独立性和将函数求值移植到编译语言。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Double Happiness: Enhancing the Coupled Gains of L-lag Coupling via Control Variates. SCOREDRIVENMODELS.JL: A JULIA PACKAGE FOR GENERALIZED AUTOREGRESSIVE SCORE MODELS Simple conditions for convergence of sequential Monte Carlo genealogies with applications Increasing the efficiency of Sequential Monte Carlo samplers through the use of approximately optimal L-kernels Particle Methods for Stochastic Differential Equation Mixed Effects Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1