Parham Dadash Pour, Mohammad A Nazzal, Basil M Darras
{"title":"The role of industry 4.0 technologies in overcoming pandemic challenges for the manufacturing sector.","authors":"Parham Dadash Pour, Mohammad A Nazzal, Basil M Darras","doi":"10.1177/1063293X221082681","DOIUrl":null,"url":null,"abstract":"<p><p>Industry 4.0 aims to revolutionize the manufacturing sector to achieve sustainable and efficient production. The novel coronavirus pandemic has brought many challenges in different industries globally. Shortage in supply of raw material, changes in product demand, and factories closures due to general lockdown are all examples of such challenges. The adaption of Industry 4.0 technologies can address these challenges and prevent their recurrence in case of another pandemic outbreak in future. A prominent advantage of Industry 4.0 technologies is their capability of building resilient and flexible systems that are responsive to exceptional circumstances such as unpredictable market demand, supply chain interruptions, and manpower shortage which can be crucial at times of pandemics. This work focuses on discussing how different Industry 4.0 technologies such as Cyber Physical Systems, Additive Manufacturing, and Internet of Things can help the manufacturing sector overcome pandemics challenges. The role of Industry 4.0 technologies in raw material provenance identification and counterfeit prevention, collaboration and business continuity, agility and decentralization of manufacturing, crisis simulation, elimination of single point of failure risk, and other factors is discussed. Moreover, a self-assessment readiness model has been developed to help manufacturing firms determine their readiness level for implementing different Industry 4.0 technologies.</p>","PeriodicalId":55213,"journal":{"name":"Concurrent Engineering-Research and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9096009/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrent Engineering-Research and Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1063293X221082681","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Industry 4.0 aims to revolutionize the manufacturing sector to achieve sustainable and efficient production. The novel coronavirus pandemic has brought many challenges in different industries globally. Shortage in supply of raw material, changes in product demand, and factories closures due to general lockdown are all examples of such challenges. The adaption of Industry 4.0 technologies can address these challenges and prevent their recurrence in case of another pandemic outbreak in future. A prominent advantage of Industry 4.0 technologies is their capability of building resilient and flexible systems that are responsive to exceptional circumstances such as unpredictable market demand, supply chain interruptions, and manpower shortage which can be crucial at times of pandemics. This work focuses on discussing how different Industry 4.0 technologies such as Cyber Physical Systems, Additive Manufacturing, and Internet of Things can help the manufacturing sector overcome pandemics challenges. The role of Industry 4.0 technologies in raw material provenance identification and counterfeit prevention, collaboration and business continuity, agility and decentralization of manufacturing, crisis simulation, elimination of single point of failure risk, and other factors is discussed. Moreover, a self-assessment readiness model has been developed to help manufacturing firms determine their readiness level for implementing different Industry 4.0 technologies.
期刊介绍:
Original articles provide current information that help tailor foamed plastics to specific product and market requirements. Diagrams, flowcharts and photographs illustrate new processing steps and machinery. This journal is a member of the Committee on Publication Ethics (COPE).