{"title":"Theoretical and experimental study of the multistage dynamic dehumidifier for enhanced thermal comfort conditions in a building","authors":"Sampath Suranjan Salins, S. Reddy, Shiva Kumar","doi":"10.1080/19401493.2022.2056636","DOIUrl":null,"url":null,"abstract":"In the present study, a mathematical model is constructed to simulate the heat and mass transfer process in a counterflow multistage reciprocating dehumidifier unit. Four packings are positioned at different positions where a camshaft mechanism controls their linear motion. Packings dip inside the Calcium Chloride desiccant instead of the conventional spray technique, improving the wettability and dehumidification effect. Theoretical and experimental results are compared. System performance is analyzed by varying the number of packing and performance parameters such as outlet temperature, specific humidity, moisture effectiveness, moisture removal rate, mass transfer coefficient and pressure change. Results indicated that the system gave maximum moisture effectiveness, moisture removal rate and mass transfer coefficient equal to 0.75, 2.21 g/s and 15.08 kg/m2−s. Stage-wise evaluation of the performance shows that there is a significant improvement in the dehumidification performance by the addition of multiple stages.","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":"72 1","pages":"345 - 361"},"PeriodicalIF":2.2000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Building Performance Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/19401493.2022.2056636","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
In the present study, a mathematical model is constructed to simulate the heat and mass transfer process in a counterflow multistage reciprocating dehumidifier unit. Four packings are positioned at different positions where a camshaft mechanism controls their linear motion. Packings dip inside the Calcium Chloride desiccant instead of the conventional spray technique, improving the wettability and dehumidification effect. Theoretical and experimental results are compared. System performance is analyzed by varying the number of packing and performance parameters such as outlet temperature, specific humidity, moisture effectiveness, moisture removal rate, mass transfer coefficient and pressure change. Results indicated that the system gave maximum moisture effectiveness, moisture removal rate and mass transfer coefficient equal to 0.75, 2.21 g/s and 15.08 kg/m2−s. Stage-wise evaluation of the performance shows that there is a significant improvement in the dehumidification performance by the addition of multiple stages.
期刊介绍:
The Journal of Building Performance Simulation (JBPS) aims to make a substantial and lasting contribution to the international building community by supporting our authors and the high-quality, original research they submit. The journal also offers a forum for original review papers and researched case studies
We welcome building performance simulation contributions that explore the following topics related to buildings and communities:
-Theoretical aspects related to modelling and simulating the physical processes (thermal, air flow, moisture, lighting, acoustics).
-Theoretical aspects related to modelling and simulating conventional and innovative energy conversion, storage, distribution, and control systems.
-Theoretical aspects related to occupants, weather data, and other boundary conditions.
-Methods and algorithms for optimizing the performance of buildings and communities and the systems which service them, including interaction with the electrical grid.
-Uncertainty, sensitivity analysis, and calibration.
-Methods and algorithms for validating models and for verifying solution methods and tools.
-Development and validation of controls-oriented models that are appropriate for model predictive control and/or automated fault detection and diagnostics.
-Techniques for educating and training tool users.
-Software development techniques and interoperability issues with direct applicability to building performance simulation.
-Case studies involving the application of building performance simulation for any stage of the design, construction, commissioning, operation, or management of buildings and the systems which service them are welcomed if they include validation or aspects that make a novel contribution to the knowledge base.