Characterization of carbon fibrous material from platanus achenes as platinum catalysts support

B. Kaludjerovic, V. Jovanović, S. Stevanović, Ž. Bogdanov, S. Krstić, V. Dodevski
{"title":"Characterization of carbon fibrous material from platanus achenes as platinum catalysts support","authors":"B. Kaludjerovic, V. Jovanović, S. Stevanović, Ž. Bogdanov, S. Krstić, V. Dodevski","doi":"10.30544/588","DOIUrl":null,"url":null,"abstract":"Carbon materials with developed porosity are usually used as supports for platinum catalysts. Physico-chemical characteristics of the support influence the properties of platinum deposited and its catalytic activity. In our studies, we deposited platinum on carbon fibrous like materials obtained from platanus seeds - achenes. The precursor was chemically activated with different reagents: NaOH, pyrogallol, and H2O2, before the carbonization process. Platinum was deposited on all substrates to study the influence of the substrate properties on the activity of the catalyst. Carbon materials were characterized by nitrogen adsorption/desorption isotherms measurements, X-ray diffraction, and scanning electron microscopy. It was noticed that the adsorption characteristics of carbon support affected the structure of platinum deposits and thus their activity.","PeriodicalId":18466,"journal":{"name":"Metallurgical and Materials Engineering","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30544/588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon materials with developed porosity are usually used as supports for platinum catalysts. Physico-chemical characteristics of the support influence the properties of platinum deposited and its catalytic activity. In our studies, we deposited platinum on carbon fibrous like materials obtained from platanus seeds - achenes. The precursor was chemically activated with different reagents: NaOH, pyrogallol, and H2O2, before the carbonization process. Platinum was deposited on all substrates to study the influence of the substrate properties on the activity of the catalyst. Carbon materials were characterized by nitrogen adsorption/desorption isotherms measurements, X-ray diffraction, and scanning electron microscopy. It was noticed that the adsorption characteristics of carbon support affected the structure of platinum deposits and thus their activity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
瘦果碳纤维材料作为铂催化剂载体的表征
多孔性较好的碳材料通常用作铂催化剂的载体。载体的理化性质影响着铂镀层的性能和催化活性。在我们的研究中,我们将铂沉积在从扁桃种子瘦果中获得的碳纤维状材料上。在炭化前,先用NaOH、邻苯三酚和H2O2对前驱体进行化学活化。在所有底物上沉积铂,研究底物性质对催化剂活性的影响。通过氮吸附/脱附等温线测量、x射线衍射和扫描电镜对碳材料进行了表征。碳载体的吸附特性影响铂镀层的结构,从而影响铂镀层的活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study of Mechanical-Elastic Parameters of Reservoir Rocks with Respect to the Purpose of Permanent CO2 Storage Mechanical and Thermal Properties of Polyurethane-Palm Fronds Ash Composites Analysis of Friction stir processed surface quality of AA2098 aluminum alloy for aeronautical applications Review Of Grain Refinement Performance Of Aluminium Cast Alloys In Situ Production of B4C and FeV Enriched Composite Surface on Low Carbon Steel by Cast Sintering Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1