{"title":"Optical Formation of Waveguide Elements in Photorefractive Surface Layer of a Lithium Niobate Sample","authors":"A.D. Bezpaly, V.M. Shandarov","doi":"10.1016/j.phpro.2017.01.013","DOIUrl":null,"url":null,"abstract":"<div><p>Formation of channel optical waveguides due to the sequential point-to-point exposure of local stripe-like regions of Y-cut lithium niobate sample surface is experimentally investigated. The surface layer of the sample is thermally doped with Cu ions to increase its photorefractive sensitivity. The laser radiation with wavelength of 532 nm and optical power of 10 mW is used for the crystal exposure in experiments. The optical inhomogeneities formed during the sample exposure are studied with their probing by laser beams with wavelength of 633 nm.</p></div>","PeriodicalId":20407,"journal":{"name":"Physics Procedia","volume":"86 ","pages":"Pages 166-169"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.phpro.2017.01.013","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Procedia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875389217300135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Formation of channel optical waveguides due to the sequential point-to-point exposure of local stripe-like regions of Y-cut lithium niobate sample surface is experimentally investigated. The surface layer of the sample is thermally doped with Cu ions to increase its photorefractive sensitivity. The laser radiation with wavelength of 532 nm and optical power of 10 mW is used for the crystal exposure in experiments. The optical inhomogeneities formed during the sample exposure are studied with their probing by laser beams with wavelength of 633 nm.