{"title":"Application of Topographic Analyses for Mapping Spatial Patterns of Soil Properties","authors":"Xia Li, G. McCarty","doi":"10.5772/INTECHOPEN.86109","DOIUrl":null,"url":null,"abstract":"Landscape topography is a key parameter impacting soil properties on the earth surface. Strong topographic controls on soil morphological, chemical, and physical properties have been reported. This chapter addressed applications of topographical information for mapping spatial patterns of soil properties in recent years. Objec-tives of this chapter are to provide an overview of (1) impacts of topographic heterogeneity on the spatial variability in soil properties and (2) commonly used topography-based models in soil science. A case study was provided to demonstrate the feasibility of applying topography-based models developed in field sites to predict soil property over a watershed scale. A large-scale soil property map can be obtained based on topographic information derived from high-resolution remotely sensed data, which would benefit studies in areas with limited data accesses or needed to extrapolate findings from representative sites to larger regions.","PeriodicalId":11389,"journal":{"name":"Earth Observation and Geospatial Analyses [Working Title]","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Observation and Geospatial Analyses [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.86109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Landscape topography is a key parameter impacting soil properties on the earth surface. Strong topographic controls on soil morphological, chemical, and physical properties have been reported. This chapter addressed applications of topographical information for mapping spatial patterns of soil properties in recent years. Objec-tives of this chapter are to provide an overview of (1) impacts of topographic heterogeneity on the spatial variability in soil properties and (2) commonly used topography-based models in soil science. A case study was provided to demonstrate the feasibility of applying topography-based models developed in field sites to predict soil property over a watershed scale. A large-scale soil property map can be obtained based on topographic information derived from high-resolution remotely sensed data, which would benefit studies in areas with limited data accesses or needed to extrapolate findings from representative sites to larger regions.