{"title":"Spatially and spectrally resolved temperature dependence of defect related luminescence using hyperspectral imaging","authors":"A. Flø, I. Burud, E. Olsen","doi":"10.1109/PVSC.2014.6925293","DOIUrl":null,"url":null,"abstract":"Spatially and spectrally resolved defect related photoluminescence of multicrystalline Silicon wafers has been obtained through hyperspectral photoluminescence imaging. The defect related emissions has been studied as a function of temperature, between 300 K (room temperature) and 87 K. The emissions D1, 0.72 eV, VID3 (0.93 eV) and BB (1,1 eV) emissions are detectable at all temperatures and their peak intensities seem to shift to higher energies with decreasing temperatures. A similar shift in the peak energy for the D2 signal is measured, however, the D2 signal is not visible at room temperature and becomes detectable at 127 K. The D3 and D4 transitions do not exhibit a shift in photon energy with temperature.","PeriodicalId":6649,"journal":{"name":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","volume":"21 1","pages":"1888-1892"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2014.6925293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Spatially and spectrally resolved defect related photoluminescence of multicrystalline Silicon wafers has been obtained through hyperspectral photoluminescence imaging. The defect related emissions has been studied as a function of temperature, between 300 K (room temperature) and 87 K. The emissions D1, 0.72 eV, VID3 (0.93 eV) and BB (1,1 eV) emissions are detectable at all temperatures and their peak intensities seem to shift to higher energies with decreasing temperatures. A similar shift in the peak energy for the D2 signal is measured, however, the D2 signal is not visible at room temperature and becomes detectable at 127 K. The D3 and D4 transitions do not exhibit a shift in photon energy with temperature.