Diffusion Equations: Convergence of the Functional Scheme Derived from the Binomial Tree with Local Volatility for Non Smooth Payoff Functions

Julien Baptiste, E. Lépinette
{"title":"Diffusion Equations: Convergence of the Functional Scheme Derived from the Binomial Tree with Local Volatility for Non Smooth Payoff Functions","authors":"Julien Baptiste, E. Lépinette","doi":"10.1080/1350486X.2018.1513806","DOIUrl":null,"url":null,"abstract":"ABSTRACT The function solution to the functional scheme derived from the binomial tree financial model with local volatility converges to the solution of a diffusion equation of type as the number of discrete dates . Contrarily to classical numerical methods, in particular finite difference methods, the principle behind the functional scheme is only based on a discretization in time. We establish the uniform convergence in time of the scheme and provide the rate of convergence when the payoff function is not necessarily smooth as in finance. We illustrate the convergence result and compare its performance to the finite difference and finite element methods by numerical examples.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":"26 1","pages":"511 - 532"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2018.1513806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT The function solution to the functional scheme derived from the binomial tree financial model with local volatility converges to the solution of a diffusion equation of type as the number of discrete dates . Contrarily to classical numerical methods, in particular finite difference methods, the principle behind the functional scheme is only based on a discretization in time. We establish the uniform convergence in time of the scheme and provide the rate of convergence when the payoff function is not necessarily smooth as in finance. We illustrate the convergence result and compare its performance to the finite difference and finite element methods by numerical examples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扩散方程:非光滑收益函数的局部波动二叉树泛函格式的收敛性
具有局部波动率的二叉树金融模型的泛函格式的函数解收敛于一类离散日期数的扩散方程的解。与经典数值方法,特别是有限差分方法不同,泛函格式背后的原理仅基于时间上的离散化。建立了该方案在时间上的一致收敛性,并给出了支付函数不一定平滑时的收敛速度。通过数值算例说明了收敛结果,并将其与有限差分法和有限元法的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Mathematical Finance
Applied Mathematical Finance Economics, Econometrics and Finance-Finance
CiteScore
2.30
自引率
0.00%
发文量
6
期刊介绍: The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.
期刊最新文献
Price Impact Without Averaging On the Skew and Curvature of the Implied and Local Volatilities Arbitrage-Free Neural-SDE Market Models Policy Gradient Learning Methods for Stochastic Control with Exit Time and Applications to Share Repurchase Pricing Multi-Period Mean Expected-Shortfall Strategies: ‘Cut Your Losses and Ride Your Gains’
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1