A dorsal pathway guided visual attention model

Lingxiang Zheng, Xianchao Zheng, Zhanjian Lin, Weiwei Tang, Changle Zhou
{"title":"A dorsal pathway guided visual attention model","authors":"Lingxiang Zheng, Xianchao Zheng, Zhanjian Lin, Weiwei Tang, Changle Zhou","doi":"10.1109/ICAWST.2013.6765517","DOIUrl":null,"url":null,"abstract":"Attention computational model is widely used in the embedded intelligent vision system to help it offload the processing effort. In this paper, we proposed a visual attention computational model based on the biological mechanism that the dorsal pathway will guide the ventral visual information process. The model involves two feature processing subsystems, one is the dorsal pathway feature processing subsystem and the other is the ventral pathway feature processing subsystem. Moreover, the dorsal pathway feature processing subsystem will generate a signal based on its processing result to modulate the information processing of the ventral pathway feature processing subsystem. The experiment results show that the proposed model outperforms the comparison models in four different test scenarios, which indicates that the proposed model may be more biologically plausible and can help the embedded intelligent vision system to find out the interested objects more accurately.","PeriodicalId":68697,"journal":{"name":"炎黄地理","volume":"19 1","pages":"638-644"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"炎黄地理","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/ICAWST.2013.6765517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Attention computational model is widely used in the embedded intelligent vision system to help it offload the processing effort. In this paper, we proposed a visual attention computational model based on the biological mechanism that the dorsal pathway will guide the ventral visual information process. The model involves two feature processing subsystems, one is the dorsal pathway feature processing subsystem and the other is the ventral pathway feature processing subsystem. Moreover, the dorsal pathway feature processing subsystem will generate a signal based on its processing result to modulate the information processing of the ventral pathway feature processing subsystem. The experiment results show that the proposed model outperforms the comparison models in four different test scenarios, which indicates that the proposed model may be more biologically plausible and can help the embedded intelligent vision system to find out the interested objects more accurately.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
背侧通路引导的视觉注意模型
注意力计算模型被广泛应用于嵌入式智能视觉系统中,以帮助其减轻处理工作量。本文基于背侧通路引导腹侧视觉信息加工的生物学机制,提出了一个视觉注意计算模型。该模型包括两个特征处理子系统,一个是背侧路径特征处理子系统,另一个是腹侧路径特征处理子系统。此外,背侧通路特征处理子系统将根据其处理结果产生信号,以调制腹侧通路特征处理子系统的信息处理。实验结果表明,该模型在四种不同的测试场景下均优于对比模型,表明该模型具有更强的生物学合理性,可以帮助嵌入式智能视觉系统更准确地找到感兴趣的物体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
784
期刊最新文献
Make decision boundary smoother by transition learning Neurophysiological evidence of the cognitive cycle and the emergence of awareness An efficient implementation of normalized cross-correlation image matching based on pyramid A hybrid recommender system based non-common items in social media "Canderoid": A mobile system to remotely monitor travelling status of the elderly with dementia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1