{"title":"Direct Adaptive Equalization with CFO Pre-compensation for Single-Carrier Underwater Acoustic Communications","authors":"Jun Tao, Fengzhong Qu, Hongta Zhang","doi":"10.1109/SAM48682.2020.9104300","DOIUrl":null,"url":null,"abstract":"For single-carrier underwater acoustic (UWA) communications, phase correction is critical to the symbol detection on the receiver side. Existing receiver schemes either run a phase- locked loop (PLL) in parallel with an equalizer or perform the phase correction at the output of an equalizer. Both parallel and serial phase correction methods suffer limitations in practical use though. In this work, we propose to introduce a carrier frequency offset (CFO) pre-compensation module for existing receivers, with the CFO estimated with an m-sequence. The so-obtained receiver scheme was tested by real data collected in an at-sea UWA communication trial. Experimental results verified the extra performance gain brought by the CFO precompensation. In particular, when the CFO is the main source of phase rotation, conventional CFO correction modules like the PLL can be dropped without performance degradation.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"33 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
For single-carrier underwater acoustic (UWA) communications, phase correction is critical to the symbol detection on the receiver side. Existing receiver schemes either run a phase- locked loop (PLL) in parallel with an equalizer or perform the phase correction at the output of an equalizer. Both parallel and serial phase correction methods suffer limitations in practical use though. In this work, we propose to introduce a carrier frequency offset (CFO) pre-compensation module for existing receivers, with the CFO estimated with an m-sequence. The so-obtained receiver scheme was tested by real data collected in an at-sea UWA communication trial. Experimental results verified the extra performance gain brought by the CFO precompensation. In particular, when the CFO is the main source of phase rotation, conventional CFO correction modules like the PLL can be dropped without performance degradation.