TWO NOVEL SINGLE NUCLEOTIDE POLYMORPHISMS IN THE VOLTAGE-GATED SODIUM CHANNEL GENE IDENTIFIED IN AEDES AEGYPTI MOSQUITOES FROM FLORIDA

Kyle J. Kosinski, Yoosook Lee, A. Romero-Weaver, Tse-Yu Chen, T. Collier, Xiaodi Wang, Derrick Mathias, E. Buckner
{"title":"TWO NOVEL SINGLE NUCLEOTIDE POLYMORPHISMS IN THE VOLTAGE-GATED SODIUM CHANNEL GENE IDENTIFIED IN AEDES AEGYPTI MOSQUITOES FROM FLORIDA","authors":"Kyle J. Kosinski, Yoosook Lee, A. Romero-Weaver, Tse-Yu Chen, T. Collier, Xiaodi Wang, Derrick Mathias, E. Buckner","doi":"10.32473/jfmca.v69i1.130622","DOIUrl":null,"url":null,"abstract":"Aedes aegypti, the primary vector of dengue, Zika, chikungunya, and yellow fever viruses, is known to be resistant to pyrethroid-based insecticides in Florida. To improve our knowledge on the mechanism(s) responsible for this resistance, we sequenced 106 Ae. aegypti individuals collected from throughout Florida and examined mutations in a known insecticide resistance gene, voltage-gated sodium channel (VGSC; AAEL023266), also commonly known as the knockdown resistance (kdr) gene. Through whole genome sequencing, we identified 2 novel nonsynonymous single nucleotide polymorphisms (SNPs), F174I and E478K, and 5 known SNPs, V410L, S723T, V1016I, D1763Y, and Q1853R, of which 4 were reported in Floridian Ae. aegypti for the first time. These SNPs provide a basis for further studies examining their contribution to pyrethroid resistant phenotypes, such as increased time of survival after insecticide exposure. This sequence data can be used to develop a multiplex genotyping assay to investigate the SNP frequencies in a larger number of samples and to examine their phenotypic contribution to pyrethroid resistance in Ae. aegypti.","PeriodicalId":17272,"journal":{"name":"Journal of the Florida Mosquito Control Association","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Florida Mosquito Control Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32473/jfmca.v69i1.130622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Aedes aegypti, the primary vector of dengue, Zika, chikungunya, and yellow fever viruses, is known to be resistant to pyrethroid-based insecticides in Florida. To improve our knowledge on the mechanism(s) responsible for this resistance, we sequenced 106 Ae. aegypti individuals collected from throughout Florida and examined mutations in a known insecticide resistance gene, voltage-gated sodium channel (VGSC; AAEL023266), also commonly known as the knockdown resistance (kdr) gene. Through whole genome sequencing, we identified 2 novel nonsynonymous single nucleotide polymorphisms (SNPs), F174I and E478K, and 5 known SNPs, V410L, S723T, V1016I, D1763Y, and Q1853R, of which 4 were reported in Floridian Ae. aegypti for the first time. These SNPs provide a basis for further studies examining their contribution to pyrethroid resistant phenotypes, such as increased time of survival after insecticide exposure. This sequence data can be used to develop a multiplex genotyping assay to investigate the SNP frequencies in a larger number of samples and to examine their phenotypic contribution to pyrethroid resistance in Ae. aegypti.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
佛罗里达埃及伊蚊电压门控钠通道基因的两个新的单核苷酸多态性
埃及伊蚊是登革热、寨卡病毒、基孔肯雅病毒和黄热病病毒的主要传播媒介,已知在佛罗里达州对拟除虫菊酯类杀虫剂具有抗药性。为了提高我们对这种抗性机制的认识,我们对106个Ae进行了测序。从佛罗里达州各地收集埃及伊蚊个体,并检查了已知杀虫剂抗性基因的突变,电压门控钠通道(VGSC);AAEL023266),通常也被称为抗敲低(kdr)基因。通过全基因组测序,我们鉴定出2个新的非同义单核苷酸多态性(SNPs), F174I和E478K,以及5个已知的SNPs, V410L, S723T, V1016I, D1763Y和Q1853R,其中4个为佛罗里达Ae报道。第一次发现埃及伊蚊。这些snp为进一步研究它们对拟除虫菊酯抗性表型的贡献提供了基础,例如杀虫剂暴露后存活时间的增加。该序列数据可用于开发多重基因分型分析,以研究大量样本中的SNP频率,并检查其表型对伊蚊拟除虫菊酯抗性的贡献。蚊。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CAPTURING TRENDS IN ARBOVIRAL SURVEILLANCE: COMPARING TRADITIONAL REVERSE TRANSCRIPTION PCR AND QUANTITATIVE REVERSE TRANSCRIPTION PCR ASSAYS TEMPERATURE AND PHOTOPERIOD EFFECT ON DURATION OF GONOTROPHIC DEVELOPMENT AND FECUNDITY OF A LABORATORY COLONY OF AEDES ALBOPICTUS NOVEL TRAP CONFIGURATION FOR LIVE CAPTURE OF MOSQUITOES CRITICAL REVIEW OF INSECTICIDE RESISTANCE IN US AEDES ALBOPICTUS: RESISTANCE STATUS, UNDERLYING MECHANISMS, AND DIRECTIONS FOR FUTURE RESEARCH INSECTICIDE TOXICITY TO HONEY BEES: LESSONS LEARNED FROM STUDIES BY THE UNIVERSITY OF FLORIDA URBAN ENTOMOLOGY LABORATORY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1