Asymmetric Conduction in an Infinite Functionally Graded Cylinder: Two-Dimensional Exact Analytical Solution Under General Boundary Conditions

IF 2.8 4区 工程技术 Q2 ENGINEERING, MECHANICAL Journal of Heat Transfer-transactions of The Asme Pub Date : 2020-04-01 DOI:10.1115/1.4046306
A. A. Delouei, A. Emamian, S. Karimnejad, H. Sajjadi, D. Jing
{"title":"Asymmetric Conduction in an Infinite Functionally Graded Cylinder: Two-Dimensional Exact Analytical Solution Under General Boundary Conditions","authors":"A. A. Delouei, A. Emamian, S. Karimnejad, H. Sajjadi, D. Jing","doi":"10.1115/1.4046306","DOIUrl":null,"url":null,"abstract":"\n This paper focuses on using an analytical method to obtain an exact solution for a long cylindrical vessel made of functionally graded materials (FGMs). Heat conduction equations are assumed to be in both radial and circumferential directions. The conduction coefficients are considered as different power-law functions of the radius. The general linear boundary conditions are adopted to make the solution applicable to the full range of problems. The obtained solution is successfully validated. Through solving illustrative test examples, the effects of material constants and boundary conditions on temperature distribution are studied. The obtained formulation can be utilized for tailoring of FGM based on the actual sophisticated thermal boundary conditions in the production process. The current analytical findings can help to manage the temperature distribution in FGMs which is an essential parameter in controlling the thermal stresses.","PeriodicalId":15937,"journal":{"name":"Journal of Heat Transfer-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heat Transfer-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4046306","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 16

Abstract

This paper focuses on using an analytical method to obtain an exact solution for a long cylindrical vessel made of functionally graded materials (FGMs). Heat conduction equations are assumed to be in both radial and circumferential directions. The conduction coefficients are considered as different power-law functions of the radius. The general linear boundary conditions are adopted to make the solution applicable to the full range of problems. The obtained solution is successfully validated. Through solving illustrative test examples, the effects of material constants and boundary conditions on temperature distribution are studied. The obtained formulation can be utilized for tailoring of FGM based on the actual sophisticated thermal boundary conditions in the production process. The current analytical findings can help to manage the temperature distribution in FGMs which is an essential parameter in controlling the thermal stresses.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无限功能梯度圆柱体中的不对称传导:一般边界条件下的二维精确解析解
本文重点研究了用解析法获得功能梯度材料(fgm)长圆柱容器的精确解。假设热传导方程是径向和周向的。传导系数被认为是半径的不同幂律函数。采用一般线性边界条件,使解适用于所有问题。得到的解得到了成功的验证。通过算例分析,研究了材料常数和边界条件对温度分布的影响。所得公式可用于根据生产过程中实际复杂的热边界条件进行FGM的定制。目前的分析结果有助于控制fgm中的温度分布,这是控制热应力的重要参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
182
审稿时长
4.7 months
期刊介绍: Topical areas including, but not limited to: Biological heat and mass transfer; Combustion and reactive flows; Conduction; Electronic and photonic cooling; Evaporation, boiling, and condensation; Experimental techniques; Forced convection; Heat exchanger fundamentals; Heat transfer enhancement; Combined heat and mass transfer; Heat transfer in manufacturing; Jets, wakes, and impingement cooling; Melting and solidification; Microscale and nanoscale heat and mass transfer; Natural and mixed convection; Porous media; Radiative heat transfer; Thermal systems; Two-phase flow and heat transfer. Such topical areas may be seen in: Aerospace; The environment; Gas turbines; Biotechnology; Electronic and photonic processes and equipment; Energy systems, Fire and combustion, heat pipes, manufacturing and materials processing, low temperature and arctic region heat transfer; Refrigeration and air conditioning; Homeland security systems; Multi-phase processes; Microscale and nanoscale devices and processes.
期刊最新文献
Thermal Resistance Of Heated Superhydrophobic Channels with Streamwise Thermocapillary Stress Analysis of Drying Front Propagation and Coupled Heat and Mass Transfer During Evaporation From Additively-Manufactured Porous Structures Under a Solar Flux Significant Enhancement of Near-Field Radiative Heat Transfer by Misaligned Bilayer Heterostructure of Graphene-Covered Gratings Influence of Buoyancy and Inter-Surface Radiation on Confined Jet Impingement Cooling of a Semi-Cylindrical Concave Plate Significance of Upstream Wall Conditions in Characterizing the Heat Transfer Phenomena of Rarefied Flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1