Characterization of invasive Neisseria meningitidis from Atlantic Canada, 2009 to 2013: With special reference to the nonpolysaccharide vaccine targets (PorA, factor H binding protein, Neisseria heparin-binding antigen and Neisseria adhesin A).
Raymond Sw Tsang, Dennis Ks Law, Rita R Gad, Tim Mailman, Gregory German, Robert Needle
{"title":"Characterization of invasive Neisseria meningitidis from Atlantic Canada, 2009 to 2013: With special reference to the nonpolysaccharide vaccine targets (PorA, factor H binding protein, Neisseria heparin-binding antigen and Neisseria adhesin A).","authors":"Raymond Sw Tsang, Dennis Ks Law, Rita R Gad, Tim Mailman, Gregory German, Robert Needle","doi":"10.1155/2015/393659","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Serogroup B Neisseria meningitidis (MenB) has always been a major cause of invasive meningococcal disease (IMD) in Canada. With the successful implementation of a meningitis C conjugate vaccine, the majority of IMD in Canada is now caused by MenB.</p><p><strong>Objective: </strong>To investigate IMD case isolates in Atlantic Canada from 2009 to 2013. Data were analyzed to determine the potential coverage of the newly licensed MenB vaccine.</p><p><strong>Methods: </strong>Serogroup, serotype and serosubtype antigens were determined from IMD case isolates. Clonal analysis was performed using multilocus sequence typing. The protein-based vaccine antigen genes were sequenced and the predicted peptides were investigated.</p><p><strong>Results: </strong>The majority of the IMD isolates were MenB (82.5%, 33 of 40) and, in particular, sequence type (ST)-154 B:4:P1.4 was responsible for 47.5% (19 of 40) of all IMD case isolates in Atlantic Canada. Isolates of this clone expressed the PorA antigen P1.4 and possessed the nhba genes encoding for Neisseria heparin-binding antigen peptide 2, which together matched exactly with two of the four components of the new four-component meningococcal B vaccine. Nineteen MenB isolates had two antigenic matches, another five MenB and one meningitis Y isolate had one antigenic match. This provided 75.8% (25 of 33) potential coverage for MenB, or a 62.5% (25 of 40) overall potential coverage for IMD.</p><p><strong>Conclusion: </strong>From 2009 to 2013, IMD in Atlantic Canada was mainly caused by MenB and, in particular, the B:4:P1.4 ST-154 clone, which accounted for 47.5% of all IMD case isolates. The new four-component meningococcal B vaccine appeared to offer adequate coverage against MenB in Atlantic Canada.</p>","PeriodicalId":49313,"journal":{"name":"Peer-To-Peer Networking and Applications","volume":"5 1","pages":"299-304"},"PeriodicalIF":2.6000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4692298/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peer-To-Peer Networking and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/393659","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Serogroup B Neisseria meningitidis (MenB) has always been a major cause of invasive meningococcal disease (IMD) in Canada. With the successful implementation of a meningitis C conjugate vaccine, the majority of IMD in Canada is now caused by MenB.
Objective: To investigate IMD case isolates in Atlantic Canada from 2009 to 2013. Data were analyzed to determine the potential coverage of the newly licensed MenB vaccine.
Methods: Serogroup, serotype and serosubtype antigens were determined from IMD case isolates. Clonal analysis was performed using multilocus sequence typing. The protein-based vaccine antigen genes were sequenced and the predicted peptides were investigated.
Results: The majority of the IMD isolates were MenB (82.5%, 33 of 40) and, in particular, sequence type (ST)-154 B:4:P1.4 was responsible for 47.5% (19 of 40) of all IMD case isolates in Atlantic Canada. Isolates of this clone expressed the PorA antigen P1.4 and possessed the nhba genes encoding for Neisseria heparin-binding antigen peptide 2, which together matched exactly with two of the four components of the new four-component meningococcal B vaccine. Nineteen MenB isolates had two antigenic matches, another five MenB and one meningitis Y isolate had one antigenic match. This provided 75.8% (25 of 33) potential coverage for MenB, or a 62.5% (25 of 40) overall potential coverage for IMD.
Conclusion: From 2009 to 2013, IMD in Atlantic Canada was mainly caused by MenB and, in particular, the B:4:P1.4 ST-154 clone, which accounted for 47.5% of all IMD case isolates. The new four-component meningococcal B vaccine appeared to offer adequate coverage against MenB in Atlantic Canada.
期刊介绍:
The aim of the Peer-to-Peer Networking and Applications journal is to disseminate state-of-the-art research and development results in this rapidly growing research area, to facilitate the deployment of P2P networking and applications, and to bring together the academic and industry communities, with the goal of fostering interaction to promote further research interests and activities, thus enabling new P2P applications and services. The journal not only addresses research topics related to networking and communications theory, but also considers the standardization, economic, and engineering aspects of P2P technologies, and their impacts on software engineering, computer engineering, networked communication, and security.
The journal serves as a forum for tackling the technical problems arising from both file sharing and media streaming applications. It also includes state-of-the-art technologies in the P2P security domain.
Peer-to-Peer Networking and Applications publishes regular papers, tutorials and review papers, case studies, and correspondence from the research, development, and standardization communities. Papers addressing system, application, and service issues are encouraged.