Optimization of Filler Loading of Multi-Particle Mineral Oil Nanofluid for Transformer Insulation

S. Sarov Mohan, P. Preetha
{"title":"Optimization of Filler Loading of Multi-Particle Mineral Oil Nanofluid for Transformer Insulation","authors":"S. Sarov Mohan, P. Preetha","doi":"10.1109/ICD46958.2020.9341838","DOIUrl":null,"url":null,"abstract":"Transformers are critical components of electric power transmission and distribution system. Mineral oil (MO) based multi-particle nanofluid (MPNF) were prepared with an intention to enhance electrical properties of MO by incorporating $A1_{2}O_{3}$ and TiO2 nanoparticles. Filler loading concentration and mixing ratio, which is the ratio between $A1_{2}O_{3}$ and TiO2 nanoparticle content is optimized by analyzing the simulation results. AC breakdown strength of the prepared samples were measured. It is found that, MPNF sample having a filler loading concentration of 0.1weight percentage (wt%) and mixing ratio of 9:1 shows highest AC breakdown strength. This sample shows an enhancement of 38.4%, 15.86%, and 17.41%, w.r.t pure oil, $A1_{2}O_{3}$ and TiO2 NFs having same filler loading concentration.","PeriodicalId":6795,"journal":{"name":"2020 IEEE 3rd International Conference on Dielectrics (ICD)","volume":"14 1","pages":"712-715"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 3rd International Conference on Dielectrics (ICD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICD46958.2020.9341838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Transformers are critical components of electric power transmission and distribution system. Mineral oil (MO) based multi-particle nanofluid (MPNF) were prepared with an intention to enhance electrical properties of MO by incorporating $A1_{2}O_{3}$ and TiO2 nanoparticles. Filler loading concentration and mixing ratio, which is the ratio between $A1_{2}O_{3}$ and TiO2 nanoparticle content is optimized by analyzing the simulation results. AC breakdown strength of the prepared samples were measured. It is found that, MPNF sample having a filler loading concentration of 0.1weight percentage (wt%) and mixing ratio of 9:1 shows highest AC breakdown strength. This sample shows an enhancement of 38.4%, 15.86%, and 17.41%, w.r.t pure oil, $A1_{2}O_{3}$ and TiO2 NFs having same filler loading concentration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
变压器绝缘用多颗粒矿物油纳米流体填料填充优化研究
变压器是输配电系统的关键部件。摘要制备了矿物油(MO)基多粒子纳米流体(MPNF),通过加入$A1_{2}O_{3}$和TiO2纳米颗粒来提高MO的电性能。通过对模拟结果的分析,优化了填料的加载浓度和掺量配比,即$A1_{2}O_{3}$与TiO2纳米颗粒含量之比。测定了制备样品的交流击穿强度。结果表明,填料浓度为0.1重量百分比(wt%)、掺量比为9:1时,MPNF试样的交流击穿强度最高。在相同填料浓度下,纯油、$A1_{2}O_{3}$和TiO2 NFs的增强率分别为38.4%、15.86%和17.41%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of Bouncing Metal Particle on Surface Charge Accumulation of A Real Size Epoxy Insulator under DC Voltage Modeling of metallized film capacitors segmented electrodes electrodynamic destruction Fourier Transform Infrared Spectroscopic Analysis of Field Failed 220 kV Polymeric Insulators The confinement effect of BNNT nanofillers on the thermal conductivity of PE from molecular simulation Experimental Study of Synergism in N2 and SF6 Gas Mixtures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1