Anomaly Prediction Based on k-Means Clustering for Memory-Constrained Embedded Devices

Yuto Kitagawa, Tasuku Ishigoka, Takuya Azumi
{"title":"Anomaly Prediction Based on k-Means Clustering for Memory-Constrained Embedded Devices","authors":"Yuto Kitagawa, Tasuku Ishigoka, Takuya Azumi","doi":"10.1109/ICMLA.2017.0-182","DOIUrl":null,"url":null,"abstract":"This paper proposes an anomaly prediction method based on k-means clustering that assumes embedded devices with memory constraints to predict control system anomalies. With this method, by checking control system behavior, it is possible to predict anomalies. However, continuing clustering is difficult because data accumulate in memory similar to existing k-means clustering method, which is problematic for embedded devices with low memory capacity. Therefore, we also propose k-means clustering to continue clustering for infinite stream data. The proposed k-means clustering method is based on online k-means clustering of sequential processing. The proposed k-means clustering method only stores data required for anomaly prediction and releases other data from memory. Experimental results show that anomalies can be predicted by k-means clustering, and the proposed method can predict anomalies similar to standard k-means clustering while reducing memory consumption. Moreover, the proposed k-means clustering demonstrates better results of anomaly prediction than existing online k-means clustering.","PeriodicalId":6636,"journal":{"name":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"22 1","pages":"26-33"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2017.0-182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes an anomaly prediction method based on k-means clustering that assumes embedded devices with memory constraints to predict control system anomalies. With this method, by checking control system behavior, it is possible to predict anomalies. However, continuing clustering is difficult because data accumulate in memory similar to existing k-means clustering method, which is problematic for embedded devices with low memory capacity. Therefore, we also propose k-means clustering to continue clustering for infinite stream data. The proposed k-means clustering method is based on online k-means clustering of sequential processing. The proposed k-means clustering method only stores data required for anomaly prediction and releases other data from memory. Experimental results show that anomalies can be predicted by k-means clustering, and the proposed method can predict anomalies similar to standard k-means clustering while reducing memory consumption. Moreover, the proposed k-means clustering demonstrates better results of anomaly prediction than existing online k-means clustering.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于k均值聚类的内存受限嵌入式设备异常预测
本文提出了一种基于k均值聚类的异常预测方法,该方法假设嵌入式设备具有内存约束来预测控制系统异常。用这种方法,通过检查控制系统的行为,可以预测异常。然而,持续聚类是困难的,因为数据像现有的k-means聚类方法一样在内存中积累,这对于内存容量小的嵌入式设备来说是有问题的。因此,我们也提出了k-means聚类来对无限流数据继续聚类。本文提出的k-means聚类方法是基于序列处理的在线k-means聚类。提出的k-means聚类方法只存储异常预测所需的数据,而将其他数据从内存中释放出来。实验结果表明,k-means聚类可以预测异常,并且该方法在减少内存消耗的同时可以预测与标准k-means聚类相似的异常。此外,所提出的k-means聚类比现有的在线k-means聚类具有更好的异常预测效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tree-Structured Curriculum Learning Based on Semantic Similarity of Text Direct Multiclass Boosting Using Base Classifiers' Posterior Probabilities Estimates Predicting Psychosis Using the Experience Sampling Method with Mobile Apps Human Action Recognition from Body-Part Directional Velocity Using Hidden Markov Models Realistic Traffic Generation for Web Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1