Effects of Silica/Clay Nanoparticles on Microstructural and Mechanical Properties of Epoxy Based Adhesives

Şehram Di̇zeci̇, A. Kandemir
{"title":"Effects of Silica/Clay Nanoparticles on Microstructural and Mechanical Properties of Epoxy Based Adhesives","authors":"Şehram Di̇zeci̇, A. Kandemir","doi":"10.15671/hjbc.1192751","DOIUrl":null,"url":null,"abstract":"Improving the mechanical properties of the epoxy-based adhesives with nanoparticles is one of the methods which justifies the use of adhesive joints significantly. This work studies the strength of adhesively bonded single-lap joints (SLJs) considering the pure adhesive, the reinforced adhesive with nano-silica particles (NSPs), nano-clay particles (NCPs), and a combination of both nano particles. Uniaxial tensile testing of the SLJs was conducted to reveal the failure loads of the joints and their elongations at failure. Furthermore, Scanning electron microscope (SEM) images and X-ray Diffraction (XRD) Analyses were used to investigate dispersion quality. It was observed that the use of just 1 wt.% NCPs or 2 wt.% NSPs improve the failure load significantly whereas the combination of both particles generally leads to large agglomerations. It is also concluded that the dispersion quality is a key to improve the strength by shifting the failure mechanism from adhesion to cohesion type.","PeriodicalId":12939,"journal":{"name":"Hacettepe Journal of Biology and Chemistry","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hacettepe Journal of Biology and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15671/hjbc.1192751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Improving the mechanical properties of the epoxy-based adhesives with nanoparticles is one of the methods which justifies the use of adhesive joints significantly. This work studies the strength of adhesively bonded single-lap joints (SLJs) considering the pure adhesive, the reinforced adhesive with nano-silica particles (NSPs), nano-clay particles (NCPs), and a combination of both nano particles. Uniaxial tensile testing of the SLJs was conducted to reveal the failure loads of the joints and their elongations at failure. Furthermore, Scanning electron microscope (SEM) images and X-ray Diffraction (XRD) Analyses were used to investigate dispersion quality. It was observed that the use of just 1 wt.% NCPs or 2 wt.% NSPs improve the failure load significantly whereas the combination of both particles generally leads to large agglomerations. It is also concluded that the dispersion quality is a key to improve the strength by shifting the failure mechanism from adhesion to cohesion type.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二氧化硅/粘土纳米颗粒对环氧基胶粘剂微观结构和力学性能的影响
用纳米颗粒改善环氧基胶粘剂的力学性能是证明胶粘剂接头使用合理性的重要方法之一。本文研究了纯胶粘剂、纳米二氧化硅颗粒(NSPs)、纳米粘土颗粒(ncp)增强胶粘剂以及两种纳米颗粒组合的单搭接接头(slj)的粘接强度。对slj进行了单轴拉伸试验,揭示了接头的破坏载荷及其破坏时的延伸量。并用扫描电镜(SEM)和x射线衍射(XRD)分析了材料的分散质量。观察到,仅使用1 wt.%的ncp或2 wt.%的NSPs可显著改善失效负荷,而这两种颗粒的组合通常会导致大的团聚。将粘结型失效机制转变为内聚型失效机制是提高强度的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Content Analysis of Locally Marketed Energy Drinks: Turkish Market COMPARISION OF THE GLIO-PROTECTIVE EFFECTS OF BIOPOLYMER COATED ELECTROSPUN SCAFFOLDS Assessment of Staphylococcal toxins acting as superantigens in different nasal specimens in the etiology of chronic rhinosinusitis E. coli O157:H7 Detection Using Surface Plasmon Resonance Based Biosensor THE SHORT-TERM EFFECTS OF WHEAT STRAW CELLULOSE ON SOIL CARBON MINERALIZATION
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1