Preparation and Characterization of Poly(vinyl alcohol)-chondroitin Sulphate Hydrogel as Scaffolds for Articular Cartilage Regeneration

Shivani Nanda, Nikhil Sood, B. Reddy, T. Markandeywar
{"title":"Preparation and Characterization of Poly(vinyl alcohol)-chondroitin Sulphate Hydrogel as Scaffolds for Articular Cartilage Regeneration","authors":"Shivani Nanda, Nikhil Sood, B. Reddy, T. Markandeywar","doi":"10.1155/2013/516021","DOIUrl":null,"url":null,"abstract":"The aim of the study was to develop PVA-CS hydrogel scaffolds using glutaraldehyde as a cross-linking agent by chemical cross-linking method in order to obtain biomimetic scaffolds for articular cartilage regeneration. The introduction of PVA enhances the mechanical and bioadhesive properties to the native tissue while chondroitin sulphate enhances the glycosaminoglycan content of extracellular matrix. The role of hydrogel as cartilage regeneration scaffold was evaluated by swelling study, porosity, rheological behaviour, in vitro degradation, and quantification of released chondroitin sulphate. In vivo results showed that cross-linked hydrogels repaired defects with no sign of inflammation as it was well anchored to tissue in the formation of new articular surface. It may be concluded that the addition of chondroitin sulphate to the PVA polymer develops a novel composite with significant applications in cartilage tissue engineering.","PeriodicalId":13278,"journal":{"name":"Indian Journal of Materials Science","volume":"47 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/516021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

The aim of the study was to develop PVA-CS hydrogel scaffolds using glutaraldehyde as a cross-linking agent by chemical cross-linking method in order to obtain biomimetic scaffolds for articular cartilage regeneration. The introduction of PVA enhances the mechanical and bioadhesive properties to the native tissue while chondroitin sulphate enhances the glycosaminoglycan content of extracellular matrix. The role of hydrogel as cartilage regeneration scaffold was evaluated by swelling study, porosity, rheological behaviour, in vitro degradation, and quantification of released chondroitin sulphate. In vivo results showed that cross-linked hydrogels repaired defects with no sign of inflammation as it was well anchored to tissue in the formation of new articular surface. It may be concluded that the addition of chondroitin sulphate to the PVA polymer develops a novel composite with significant applications in cartilage tissue engineering.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚乙烯醇-硫酸软骨素水凝胶的制备与表征
本研究的目的是以戊二醛为交联剂,通过化学交联的方法制备PVA-CS水凝胶支架,以获得用于关节软骨再生的仿生支架。PVA的引入提高了对原生组织的力学和生物粘附性能,而硫酸软骨素提高了细胞外基质的糖胺聚糖含量。水凝胶作为软骨再生支架的作用通过肿胀研究、孔隙度、流变行为、体外降解和释放硫酸软骨素的量化来评估。体内实验结果表明,交联水凝胶修复了缺陷,没有炎症迹象,因为它在新关节表面形成过程中很好地锚定在组织上。由此可见,在PVA聚合物中添加硫酸软骨素是一种新型的复合材料,在软骨组织工程中具有重要的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Mechanical Properties of Hybrid Aluminium 7075 Matrix Composite Material Reinforced with SiC and TiC Produced by Powder Metallurgy Method Process to Improve the Adherences of Copper to a PTFE Plate Preparation of Paper Mulberry Fibers and Possibility of Cotton/Paper Mulberry Yarns Production Three-Dimensional Unsteady State Temperature Distribution of Thin Rectangular Plate with Moving Point Heat Source Experimental Evaluation and Characterization of Electron Beam Welding of 2219 AL-Alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1