Risk

M. Gray
{"title":"Risk","authors":"M. Gray","doi":"10.1080/09332480.2022.2145134","DOIUrl":null,"url":null,"abstract":"Should different people be treated equally or should, as insurers tell us, different people be treated differently? Is discrimination bad, or is it good? Does today’s reliance on machine-generated algorithms to turn risk into measurable uncertainty differ in essence from trusting the actuarial tables generated by de Moivre from a London coffee house? Do legal regulations assure fair balance of the costs and benefits? What about inclusive social insurance?","PeriodicalId":88226,"journal":{"name":"Chance (New York, N.Y.)","volume":"27 1","pages":"36 - 39"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chance (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09332480.2022.2145134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Should different people be treated equally or should, as insurers tell us, different people be treated differently? Is discrimination bad, or is it good? Does today’s reliance on machine-generated algorithms to turn risk into measurable uncertainty differ in essence from trusting the actuarial tables generated by de Moivre from a London coffee house? Do legal regulations assure fair balance of the costs and benefits? What about inclusive social insurance?
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
风险
不同的人应该被平等对待,还是像保险公司告诉我们的那样,不同的人应该被区别对待?歧视是好是坏?今天依赖机器生成的算法将风险转化为可测量的不确定性,与信任德·莫弗尔(de Moivre)在伦敦咖啡馆生成的精算表,在本质上有什么不同吗?法律法规是否保证了成本和收益的公平平衡?那包容性社会保险呢?
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiple discoveries in causal inference: LATE for the party. Bayes Factors for Forensic Decision Analyses with R Three Welcome Arrivals for 2023: 1. Florence Nightingale Bayesian Probability for Babies Fresh Perspective
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1