Yekaterina Moisseyeva, Alexandra Saitova, Sergey Strokin
{"title":"Calculating densities and viscosities of natural gas with a high content of C2+ to predict two-phase liquid-gas flow pattern","authors":"Yekaterina Moisseyeva, Alexandra Saitova, Sergey Strokin","doi":"10.1016/j.petlm.2023.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>The paper is devoted to the two-phase flow simulation. The gas-condensate mixture flow in a horizontal pipe under high pressure is considered. The influence of the equation of state (EOS) choice for mixture properties modelling on the flow regime calculation results is studied for gas with high content of methane homologues. An analytical overview of the methods to predict the flow pattern is provided. Based on this analysis, two techniques are selected. For these techniques, values of density and viscosity for each phase are required. Density calculation for the gas phase is performed with Van der Waals based EOS. The propriate EOS is selected based on studies of calculation errors for test mixtures. Calculation of liquid phase density is done by means of Patela-Teja and Guo-Du equations, two different models are considered for viscosity estimation. The flow patterns of gas-condensate mixture in a range of temperatures and pressures are calculated and verified via probability map. The results of study allow to recommend the Brusilovsky EOS for calculation of densities for similar gas mixtures and make more rigorous flow regime evaluation. The probability map shows that for the chosen composition and parameters of media the flow pattern is mostly transitional between segregated and annular independent from EOS.</p></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"9 4","pages":"Pages 579-591"},"PeriodicalIF":4.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S240565612300007X/pdfft?md5=dcdfdd5534e980b17697f84b75d40f68&pid=1-s2.0-S240565612300007X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S240565612300007X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The paper is devoted to the two-phase flow simulation. The gas-condensate mixture flow in a horizontal pipe under high pressure is considered. The influence of the equation of state (EOS) choice for mixture properties modelling on the flow regime calculation results is studied for gas with high content of methane homologues. An analytical overview of the methods to predict the flow pattern is provided. Based on this analysis, two techniques are selected. For these techniques, values of density and viscosity for each phase are required. Density calculation for the gas phase is performed with Van der Waals based EOS. The propriate EOS is selected based on studies of calculation errors for test mixtures. Calculation of liquid phase density is done by means of Patela-Teja and Guo-Du equations, two different models are considered for viscosity estimation. The flow patterns of gas-condensate mixture in a range of temperatures and pressures are calculated and verified via probability map. The results of study allow to recommend the Brusilovsky EOS for calculation of densities for similar gas mixtures and make more rigorous flow regime evaluation. The probability map shows that for the chosen composition and parameters of media the flow pattern is mostly transitional between segregated and annular independent from EOS.
期刊介绍:
Examples of appropriate topical areas that will be considered include the following: 1.comprehensive research on oil and gas reservoir (reservoir geology): -geological basis of oil and gas reservoirs -reservoir geochemistry -reservoir formation mechanism -reservoir identification methods and techniques 2.kinetics of oil and gas basins and analyses of potential oil and gas resources: -fine description factors of hydrocarbon accumulation -mechanism analysis on recovery and dynamic accumulation process -relationship between accumulation factors and the accumulation process -analysis of oil and gas potential resource 3.theories and methods for complex reservoir geophysical prospecting: -geophysical basis of deep geologic structures and background of hydrocarbon occurrence -geophysical prediction of deep and complex reservoirs -physical test analyses and numerical simulations of reservoir rocks -anisotropic medium seismic imaging theory and new technology for multiwave seismic exploration -o theories and methods for reservoir fluid geophysical identification and prediction 4.theories, methods, technology, and design for complex reservoir development: -reservoir percolation theory and application technology -field development theories and methods -theory and technology for enhancing recovery efficiency 5.working liquid for oil and gas wells and reservoir protection technology: -working chemicals and mechanics for oil and gas wells -reservoir protection technology 6.new techniques and technologies for oil and gas drilling and production: -under-balanced drilling/gas drilling -special-track well drilling -cementing and completion of oil and gas wells -engineering safety applications for oil and gas wells -new technology of fracture acidizing