Regilene de Sousa Silva, Heloísa Duarte Rengel, Francis Dalponte Voigt, R. Machado, Regina de Fátima Peralta Muniz Moreira, C. Marangoni
{"title":"Treatment of real textile wastewater by coagulation/flocculation integrated with direct contact membrane distillation","authors":"Regilene de Sousa Silva, Heloísa Duarte Rengel, Francis Dalponte Voigt, R. Machado, Regina de Fátima Peralta Muniz Moreira, C. Marangoni","doi":"10.1080/01496395.2023.2245135","DOIUrl":null,"url":null,"abstract":"ABSTRACT This study investigated the water recovery of real textile wastewater by Coagulation/Flocculation (CF) integrated with Direct Contact Membrane Distillation (DCMD). The proof-of-concept tests were studied with synthetic solutions of reactive and disperse black dyes at different concentrations, and real textile wastewater from the discharge machine and the equalization tank. Results showed that CF-DCMD exhibited higher permeate fluxes (up to 40%) than single DCMD and maximum color rejection rates (100%). Moreover, CF-DCMD enabled water reclamation from cotton and polyester dyeing wastewater which was not possible by MD (Membrane Distillation). The integrated system showed excellent chemical oxygen demand removal capacity, total suspended solids, turbidity, conductivity reduction, and removed any signs of toxicity from the tested wastewater. The coagulation/flocculation process prior to the MD reduced the fouling factor for all wastewater, highlighting the equalization tank where a reduction of around 72% was observed, achieving the goal of reducing fouling and increasing the efficiency of the MD. Membrane characterization indicated that CF-DCMD confirmed less fouling of membranes than single DCMD. Thus, this study allows to understand the potential and robustness of the CF-DCMD process in the treatment of textile wastewater and that it is possible to develop alternative technologies to treat complex wastewater effectively. GRAPHICAL ABSTRACT","PeriodicalId":21680,"journal":{"name":"Separation Science and Technology","volume":"98 1","pages":"2394 - 2410"},"PeriodicalIF":2.3000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/01496395.2023.2245135","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT This study investigated the water recovery of real textile wastewater by Coagulation/Flocculation (CF) integrated with Direct Contact Membrane Distillation (DCMD). The proof-of-concept tests were studied with synthetic solutions of reactive and disperse black dyes at different concentrations, and real textile wastewater from the discharge machine and the equalization tank. Results showed that CF-DCMD exhibited higher permeate fluxes (up to 40%) than single DCMD and maximum color rejection rates (100%). Moreover, CF-DCMD enabled water reclamation from cotton and polyester dyeing wastewater which was not possible by MD (Membrane Distillation). The integrated system showed excellent chemical oxygen demand removal capacity, total suspended solids, turbidity, conductivity reduction, and removed any signs of toxicity from the tested wastewater. The coagulation/flocculation process prior to the MD reduced the fouling factor for all wastewater, highlighting the equalization tank where a reduction of around 72% was observed, achieving the goal of reducing fouling and increasing the efficiency of the MD. Membrane characterization indicated that CF-DCMD confirmed less fouling of membranes than single DCMD. Thus, this study allows to understand the potential and robustness of the CF-DCMD process in the treatment of textile wastewater and that it is possible to develop alternative technologies to treat complex wastewater effectively. GRAPHICAL ABSTRACT
期刊介绍:
This international journal deals with fundamental and applied aspects of separation processes related to a number of fields. A wide range of topics are covered in the journal including adsorption, membranes, extraction, distillation, absorption, centrifugation, crystallization, precipitation, reactive separations, hybrid processes, continuous separations, carbon capture, flocculation and magnetic separations. The journal focuses on state of the art preparative separations and theoretical contributions to the field of separation science. Applications include environmental, energy, water, and biotechnology. The journal does not publish analytical separation papers unless they contain new fundamental contributions to the field of separation science.