{"title":"Relating random matrix map enumeration to a universal symbol calculus for recurrence operators in terms of Bessel–Appell polynomials","authors":"N. Ercolani, Patrick Waters","doi":"10.1142/s201032632250037x","DOIUrl":null,"url":null,"abstract":"Maps are polygonal cellular networks on Riemann surfaces. This paper analyzes the construction of closed form general representations for the enumerative generating functions associated to maps of fixed but arbitrary genus. The method of construction developed here involves a novel asymptotic symbol calculus for difference operators based on the relation between spectral asymptotics for Hermitian random matrices and asymptotics of orthogonal polynomials with exponential weights. These closed form expressions have a universal character in the sense that they are independent of the explicit valence distribution of the cellular networks within a broad class. Nevertheless the valence distributions may be recovered from the closed form generating functions by a remarkable unwinding identity in terms of Appell polynomials generated by Bessel functions. Our treatment reveals the generating functions to be solutions of nonlinear conservation laws and their prolongations. This characterization enables one to gain insights that go beyond more traditional methods that are purely combinatorial. Universality results are connected to stability results for characteristic singularities of conservation laws that were studied by Caflisch, Ercolani, Hou and Landis, Multi-valued solutions and branch point singularities for nonlinear hyperbolic or elliptic systems, Commun. Pure Appl. Math. 46 (1993) 453–499, as well as directly related to universality results for random matrix spectra.","PeriodicalId":54329,"journal":{"name":"Random Matrices-Theory and Applications","volume":"8 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Matrices-Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s201032632250037x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Maps are polygonal cellular networks on Riemann surfaces. This paper analyzes the construction of closed form general representations for the enumerative generating functions associated to maps of fixed but arbitrary genus. The method of construction developed here involves a novel asymptotic symbol calculus for difference operators based on the relation between spectral asymptotics for Hermitian random matrices and asymptotics of orthogonal polynomials with exponential weights. These closed form expressions have a universal character in the sense that they are independent of the explicit valence distribution of the cellular networks within a broad class. Nevertheless the valence distributions may be recovered from the closed form generating functions by a remarkable unwinding identity in terms of Appell polynomials generated by Bessel functions. Our treatment reveals the generating functions to be solutions of nonlinear conservation laws and their prolongations. This characterization enables one to gain insights that go beyond more traditional methods that are purely combinatorial. Universality results are connected to stability results for characteristic singularities of conservation laws that were studied by Caflisch, Ercolani, Hou and Landis, Multi-valued solutions and branch point singularities for nonlinear hyperbolic or elliptic systems, Commun. Pure Appl. Math. 46 (1993) 453–499, as well as directly related to universality results for random matrix spectra.
期刊介绍:
Random Matrix Theory (RMT) has a long and rich history and has, especially in recent years, shown to have important applications in many diverse areas of mathematics, science, and engineering. The scope of RMT and its applications include the areas of classical analysis, probability theory, statistical analysis of big data, as well as connections to graph theory, number theory, representation theory, and many areas of mathematical physics.
Applications of Random Matrix Theory continue to present themselves and new applications are welcome in this journal. Some examples are orthogonal polynomial theory, free probability, integrable systems, growth models, wireless communications, signal processing, numerical computing, complex networks, economics, statistical mechanics, and quantum theory.
Special issues devoted to single topic of current interest will also be considered and published in this journal.