Features Extraction on IoT Intrusion Detection System Using Principal Components Analysis (PCA)

Sharipuddin, Benni Purnama, Kurniabudi, E. Winanto, D. Stiawan, Darmawiiovo Hanapi, Mohd Yazid Bin Idris, R. Budiarto
{"title":"Features Extraction on IoT Intrusion Detection System Using Principal Components Analysis (PCA)","authors":"Sharipuddin, Benni Purnama, Kurniabudi, E. Winanto, D. Stiawan, Darmawiiovo Hanapi, Mohd Yazid Bin Idris, R. Budiarto","doi":"10.23919/EECSI50503.2020.9251292","DOIUrl":null,"url":null,"abstract":"Feature extraction solves the problem of finding the most efficient and comprehensive set of features. A Principle Component Analysis (PCA) feature extraction algorithm is applied to optimize the effectiveness of feature extraction to build an effective intrusion detection method. This paper uses the Principal Components Analysis (PCA) for features extraction on intrusion detection system with the aim to improve the accuracy and precision of the detection. The impact of features extraction to attack detection was examined. Experiments on a network traffic dataset created from an Internet of Thing (IoT) testbed network topology were conducted and the results show that the accuracy of the detection reaches 100 percent.","PeriodicalId":6743,"journal":{"name":"2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI)","volume":"196 1","pages":"114-118"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EECSI50503.2020.9251292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Feature extraction solves the problem of finding the most efficient and comprehensive set of features. A Principle Component Analysis (PCA) feature extraction algorithm is applied to optimize the effectiveness of feature extraction to build an effective intrusion detection method. This paper uses the Principal Components Analysis (PCA) for features extraction on intrusion detection system with the aim to improve the accuracy and precision of the detection. The impact of features extraction to attack detection was examined. Experiments on a network traffic dataset created from an Internet of Thing (IoT) testbed network topology were conducted and the results show that the accuracy of the detection reaches 100 percent.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于主成分分析的物联网入侵检测系统特征提取
特征提取解决了寻找最有效和最全面的特征集的问题。采用主成分分析(PCA)特征提取算法优化特征提取的有效性,构建有效的入侵检测方法。本文将主成分分析(PCA)用于入侵检测系统的特征提取,以提高检测的准确性和精密度。研究了特征提取对攻击检测的影响。在物联网(IoT)网络拓扑试验台创建的网络流量数据集上进行了实验,结果表明,检测的准确率达到100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aquatic Iguana: A Floating Waste Collecting Robot with IoT Based Water Monitoring System Improving the Anomaly Detection by Combining PSO Search Methods and J48 Algorithm A Wireless ECG Device with Mobile Applications for Android Features Extraction on IoT Intrusion Detection System Using Principal Components Analysis (PCA) Deep Convolutional Architecture for Block-Based Classification of Small Pulmonary Nodules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1