{"title":"ASSESSMENT OF BINARY PRESSURE SENSITIVE PAINT FOR TEMPERATURE AND HEAT TRANSFER COEFFICIENT MEASUREMENT OF LEADING EDGE FILM COOLING","authors":"Timothy A. Burdett, M. Yeh, L. Wright","doi":"10.1115/1.4063165","DOIUrl":null,"url":null,"abstract":"\n Film cooling is a common technique for protecting gas turbine components from the hot combustor exhaust. Highly resolved film cooling effectiveness distributions are often obtained by measuring the mass transfer of a foreign gas coolant in mainstream air using pressure sensitive paint (PSP). However, PSP is not able to measure the heat transfer coefficient, which is necessary to fully quantify the impact of film cooling. Instead, binary pressure sensitive paint (BPSP) has an additional luminophore that is sensitive to temperature and can be used to measure the heat transfer coefficient. In this experiment, the film cooling effectiveness and heat transfer coefficient were measured using BPSP on the leading edge of a cylinder. The cylinder had a 7.62-cm diameter with two rows of cooling holes at ±15°C from the leading edge. Each row contained 10 holes with a 0.475-cm diameter, spaced 4 diameters apart in the spanwise direction and angled 30°C from the cylinder axis. The mainstream Reynolds number was 100,000 based on cylinder diameter with a turbulence intensity of 7.1%. The coolant-to-mainstream density ratio was 1.0, and the blowing ratio was 0.8. The heat transfer coefficient was measured in a transient heat transfer experiment using the reference signal from the BPSP. Despite the high uncertainty of the measurement, ranging from 24.0% to 71.1%, the results demonstrate the feasibility of the method and identify the best test methodology to minimize conduction errors.","PeriodicalId":17404,"journal":{"name":"Journal of Thermal Science and Engineering Applications","volume":"244 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Science and Engineering Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063165","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Film cooling is a common technique for protecting gas turbine components from the hot combustor exhaust. Highly resolved film cooling effectiveness distributions are often obtained by measuring the mass transfer of a foreign gas coolant in mainstream air using pressure sensitive paint (PSP). However, PSP is not able to measure the heat transfer coefficient, which is necessary to fully quantify the impact of film cooling. Instead, binary pressure sensitive paint (BPSP) has an additional luminophore that is sensitive to temperature and can be used to measure the heat transfer coefficient. In this experiment, the film cooling effectiveness and heat transfer coefficient were measured using BPSP on the leading edge of a cylinder. The cylinder had a 7.62-cm diameter with two rows of cooling holes at ±15°C from the leading edge. Each row contained 10 holes with a 0.475-cm diameter, spaced 4 diameters apart in the spanwise direction and angled 30°C from the cylinder axis. The mainstream Reynolds number was 100,000 based on cylinder diameter with a turbulence intensity of 7.1%. The coolant-to-mainstream density ratio was 1.0, and the blowing ratio was 0.8. The heat transfer coefficient was measured in a transient heat transfer experiment using the reference signal from the BPSP. Despite the high uncertainty of the measurement, ranging from 24.0% to 71.1%, the results demonstrate the feasibility of the method and identify the best test methodology to minimize conduction errors.
期刊介绍:
Applications in: Aerospace systems; Gas turbines; Biotechnology; Defense systems; Electronic and photonic equipment; Energy systems; Manufacturing; Refrigeration and air conditioning; Homeland security systems; Micro- and nanoscale devices; Petrochemical processing; Medical systems; Energy efficiency; Sustainability; Solar systems; Combustion systems