{"title":"Fully Bayesian Learning of Multivariate Beta Mixture Models","authors":"Mahsa Amirkhani, Narges Manouchehri, N. Bouguila","doi":"10.1109/IRI49571.2020.00025","DOIUrl":null,"url":null,"abstract":"Mixture models have been widely used as statistical learning paradigms in various unsupervised machine learning applications, where labeling a vast amount of data is impractical and costly. They have shown a significant success and convincing performance in many real-world problems such as medical applications, image clustering and anomaly detection. In this paper, we explore a fully Bayesian analysis of multivariate Beta mixture model and propose a solution for the problem of estimating parameters using Markov Chain Monte Carlo technique. We exploit Gibbs sampling within Metropolis-Hastings for Monte Carlo simulation. We also obtained prior distribution which is a conjugate for multivariate Beta. The performance of our proposed method is evaluated and compared with Bayesian Gaussian mixture model via challenging applications, including cell image categorization and network intrusion detection. Experimental results confirm that the proposed technique can provide an effective solution comparing to similar alternatives.","PeriodicalId":93159,"journal":{"name":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","volume":"140 1","pages":"120-127"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI49571.2020.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Mixture models have been widely used as statistical learning paradigms in various unsupervised machine learning applications, where labeling a vast amount of data is impractical and costly. They have shown a significant success and convincing performance in many real-world problems such as medical applications, image clustering and anomaly detection. In this paper, we explore a fully Bayesian analysis of multivariate Beta mixture model and propose a solution for the problem of estimating parameters using Markov Chain Monte Carlo technique. We exploit Gibbs sampling within Metropolis-Hastings for Monte Carlo simulation. We also obtained prior distribution which is a conjugate for multivariate Beta. The performance of our proposed method is evaluated and compared with Bayesian Gaussian mixture model via challenging applications, including cell image categorization and network intrusion detection. Experimental results confirm that the proposed technique can provide an effective solution comparing to similar alternatives.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多元Beta混合模型的全贝叶斯学习
混合模型已被广泛用作各种无监督机器学习应用中的统计学习范式,在这些应用中,标记大量数据是不切实际且昂贵的。在医疗应用、图像聚类和异常检测等许多现实问题中,它们都取得了显著的成功和令人信服的表现。本文探讨了多元Beta混合模型的全贝叶斯分析,并提出了一种利用马尔可夫链蒙特卡罗技术估计参数问题的解决方案。我们利用吉布斯采样在大都会黑斯廷斯蒙特卡洛模拟。我们还得到了多元Beta的共轭先验分布。通过具有挑战性的应用,包括细胞图像分类和网络入侵检测,评估了我们提出的方法的性能,并与贝叶斯高斯混合模型进行了比较。实验结果表明,与同类方案相比,该方法是一种有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Attention-Guided Generative Adversarial Network to Address Atypical Anatomy in Synthetic CT Generation. Natural Language-based Integration of Online Review Datasets for Identification of Sex Trafficking Businesses. An Adaptive and Dynamic Biosensor Epidemic Model for COVID-19 Relating the Empirical Foundations of Attack Generation and Vulnerability Discovery Latent Feature Modelling for Recommender Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1