{"title":"Geochemical Inversion Applied to Oil Samples from Lower Cretaceous Reservoirs, Southeast Abu Dhabi: Implications for Hydrocarbon Exploration","authors":"Lozano Mario Jorge, H. Camacho, José O. Guevara","doi":"10.2118/207558-ms","DOIUrl":null,"url":null,"abstract":"\n The Middle East contains some of the most fascinating and prolific oil provinces in the world. The combination of excellent source rocks of different geologic ages, the presence of outstanding reservoirs and ubiquitous seals, optimal thermal history, and structural evolution provides an ideal recipe to produce the largest oilfields in the world. The UAE is currently estimated to hold 6% of global oil reserves, 96% of which are within Abu Dhabi. However, exploration for additional recoverable reserves is becoming more challenging. Finding hydrocarbons for the future is dependent upon a detailed understanding of the petroleum systems and subtle play types. For southeastern Abu Dhabi, several petroleum systems have been proposed to explain the oil and gas accumulations in Lower Cretaceous reservoirs. This study presents the practical application of a geochemical inversion workflow to a set of oil samples from Lower Cretaceous reservoirs collected in two exploration wells recently drilled in southeastern Abu Dhabi. The geochemical inversion workflow is based on stable isotope, biomarker, and oil composition data. Preliminary results and comparisons with previously identified oil families in the UAE suggest that the oils were generated from a carbonate-rich source rock deposited during Jurassic time. Compositional data and detailed stratigraphic and structural analyses support the possibility of multiple episodes of lateral and vertical migrations. The implications and risk associated with the timing of oil generation and trap formation are presented here to define a path forward and guide the prospecting efforts within this exciting region.","PeriodicalId":11069,"journal":{"name":"Day 2 Tue, November 16, 2021","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, November 16, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/207558-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Middle East contains some of the most fascinating and prolific oil provinces in the world. The combination of excellent source rocks of different geologic ages, the presence of outstanding reservoirs and ubiquitous seals, optimal thermal history, and structural evolution provides an ideal recipe to produce the largest oilfields in the world. The UAE is currently estimated to hold 6% of global oil reserves, 96% of which are within Abu Dhabi. However, exploration for additional recoverable reserves is becoming more challenging. Finding hydrocarbons for the future is dependent upon a detailed understanding of the petroleum systems and subtle play types. For southeastern Abu Dhabi, several petroleum systems have been proposed to explain the oil and gas accumulations in Lower Cretaceous reservoirs. This study presents the practical application of a geochemical inversion workflow to a set of oil samples from Lower Cretaceous reservoirs collected in two exploration wells recently drilled in southeastern Abu Dhabi. The geochemical inversion workflow is based on stable isotope, biomarker, and oil composition data. Preliminary results and comparisons with previously identified oil families in the UAE suggest that the oils were generated from a carbonate-rich source rock deposited during Jurassic time. Compositional data and detailed stratigraphic and structural analyses support the possibility of multiple episodes of lateral and vertical migrations. The implications and risk associated with the timing of oil generation and trap formation are presented here to define a path forward and guide the prospecting efforts within this exciting region.