Visual Servo Based Trajectory Planning for Fast and Accurate Sheet Pick and Place Operations

IF 1 Q4 ENGINEERING, MANUFACTURING Journal of Micro and Nano-Manufacturing Pub Date : 2022-06-27 DOI:10.1115/msec2022-85952
O. Manyar, Alec Kanyuck, Bharat Deshkulkarni, S. Gupta
{"title":"Visual Servo Based Trajectory Planning for Fast and Accurate Sheet Pick and Place Operations","authors":"O. Manyar, Alec Kanyuck, Bharat Deshkulkarni, S. Gupta","doi":"10.1115/msec2022-85952","DOIUrl":null,"url":null,"abstract":"\n In industry, several operations require sheet-like materials to be transported from a loading station to the desired location. Such applications are prevalent in the aerospace and textile industry where composite prepreg sheets or fabrics are placed over a tool or fed to a machine. Using robots for sheet transport operations offers a flexible solution for such highly complex tasks. To create high-quality parts, sheets need to be accurately placed at the correct location. This paper presents automated trajectory planning and control algorithms for a robot to pick up sheets from the input station using suction grippers and, transport and place them over the tool surface. Machine vision is used at the pick location for estimating the sheet pose. Unfortunately, pick-up accuracy is not sufficiently high due to sheet movement during suction-based grasping and localization errors. We employ ideas inspired by visual servo techniques to accurately place the sheet on the tool. Our method uses an Eye-to-Hand camera configuration to align the desired image features with the reference markings on the tool. We introduce a sampling-based Jacobian estimation scheme that can reliably achieve the desired accuracy while minimizing the operation time. Experiments are performed to validate our methodology and compute the placement accuracy on an industrial tool.","PeriodicalId":45459,"journal":{"name":"Journal of Micro and Nano-Manufacturing","volume":"21 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro and Nano-Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/msec2022-85952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

In industry, several operations require sheet-like materials to be transported from a loading station to the desired location. Such applications are prevalent in the aerospace and textile industry where composite prepreg sheets or fabrics are placed over a tool or fed to a machine. Using robots for sheet transport operations offers a flexible solution for such highly complex tasks. To create high-quality parts, sheets need to be accurately placed at the correct location. This paper presents automated trajectory planning and control algorithms for a robot to pick up sheets from the input station using suction grippers and, transport and place them over the tool surface. Machine vision is used at the pick location for estimating the sheet pose. Unfortunately, pick-up accuracy is not sufficiently high due to sheet movement during suction-based grasping and localization errors. We employ ideas inspired by visual servo techniques to accurately place the sheet on the tool. Our method uses an Eye-to-Hand camera configuration to align the desired image features with the reference markings on the tool. We introduce a sampling-based Jacobian estimation scheme that can reliably achieve the desired accuracy while minimizing the operation time. Experiments are performed to validate our methodology and compute the placement accuracy on an industrial tool.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于视觉伺服的轨迹规划快速准确的板材取放操作
在工业中,一些操作需要将片状材料从装载站运送到所需的位置。这种应用在航空航天和纺织工业中很普遍,在这些工业中,复合预浸料片或织物被放置在工具上或送入机器。使用机器人进行板材运输操作为此类高度复杂的任务提供了灵活的解决方案。为了制造高质量的零件,板材需要精确地放置在正确的位置。本文介绍了一个机器人的自动轨迹规划和控制算法,该机器人使用吸力夹具从输入站拾取板材,并将其运输并放置在工具表面上。在拾取位置使用机器视觉来估计片姿。不幸的是,由于在吸力抓取和定位错误过程中板材的运动,拾取精度不够高。我们采用视觉伺服技术的灵感来准确地将板材放置在工具上。我们的方法使用眼对手相机配置将所需的图像特征与工具上的参考标记对齐。我们引入了一种基于采样的雅可比估计方案,该方案可以在最小化操作时间的同时可靠地达到期望的精度。实验验证了我们的方法,并计算了工业工具上的放置精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Micro and Nano-Manufacturing
Journal of Micro and Nano-Manufacturing ENGINEERING, MANUFACTURING-
CiteScore
2.70
自引率
0.00%
发文量
12
期刊介绍: The Journal of Micro and Nano-Manufacturing provides a forum for the rapid dissemination of original theoretical and applied research in the areas of micro- and nano-manufacturing that are related to process innovation, accuracy, and precision, throughput enhancement, material utilization, compact equipment development, environmental and life-cycle analysis, and predictive modeling of manufacturing processes with feature sizes less than one hundred micrometers. Papers addressing special needs in emerging areas, such as biomedical devices, drug manufacturing, water and energy, are also encouraged. Areas of interest including, but not limited to: Unit micro- and nano-manufacturing processes; Hybrid manufacturing processes combining bottom-up and top-down processes; Hybrid manufacturing processes utilizing various energy sources (optical, mechanical, electrical, solar, etc.) to achieve multi-scale features and resolution; High-throughput micro- and nano-manufacturing processes; Equipment development; Predictive modeling and simulation of materials and/or systems enabling point-of-need or scaled-up micro- and nano-manufacturing; Metrology at the micro- and nano-scales over large areas; Sensors and sensor integration; Design algorithms for multi-scale manufacturing; Life cycle analysis; Logistics and material handling related to micro- and nano-manufacturing.
期刊最新文献
Transfer Learning For Predictive Quality In Laser-Induced Plasma Micro-Machining Simultaneous Micro- and Nanoscale Silicon Fabrication by Metal-Assisted Chemical Etch Thermodynamic Evaluation of Electroosmotic Peristaltic Pumping for Shear-Thinning Fluid Flow Electric-field and Mechanical Vibration-assisted Atomic Force Microscope (AFM)-based Nanopatterning Fabrication of Bioinspired Micro/nano-textured Surfaces Through Scalable Roll Coating Manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1