Speaker-dependent 100 word recognition using CombNET and dynamic spectral features of speech

T. Kitamura, K. Nishioka, A. Iwata, E. Hayahara
{"title":"Speaker-dependent 100 word recognition using CombNET and dynamic spectral features of speech","authors":"T. Kitamura, K. Nishioka, A. Iwata, E. Hayahara","doi":"10.1109/MWSCAS.1991.252132","DOIUrl":null,"url":null,"abstract":"Present speaker-dependent 100-word recognition using CombNET, which consists of a four-layered neural network with a comb structure, and dynamic spectral features of speech based on a two-dimensional mel-cepstrum. CombNET consists of two types of neural network. The first one is a stem network which utilizes a self-organizing algorithm and roughly classifies an input pattern. The second one consists of many branch networks using a back-propagation algorithm and precisely classifies the pattern. Experimental results on speaker-dependent word recognition for 100 Japanese city names uttered by nine male speakers show that the recognition accuracy is 97.3%.<<ETX>>","PeriodicalId":6453,"journal":{"name":"[1991] Proceedings of the 34th Midwest Symposium on Circuits and Systems","volume":"50 1","pages":"83-86 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the 34th Midwest Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.1991.252132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Present speaker-dependent 100-word recognition using CombNET, which consists of a four-layered neural network with a comb structure, and dynamic spectral features of speech based on a two-dimensional mel-cepstrum. CombNET consists of two types of neural network. The first one is a stem network which utilizes a self-organizing algorithm and roughly classifies an input pattern. The second one consists of many branch networks using a back-propagation algorithm and precisely classifies the pattern. Experimental results on speaker-dependent word recognition for 100 Japanese city names uttered by nine male speakers show that the recognition accuracy is 97.3%.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于CombNET和动态频谱特征的说话人依赖100字识别
基于梳子结构的四层神经网络和基于二维mel-倒谱的语音动态频谱特征,提出了基于说话人的100字识别方法。CombNET由两类神经网络组成。第一种是利用自组织算法对输入模式进行粗略分类的干网络。第二种方法使用反向传播算法由多个分支网络组成,并对模式进行精确分类。对9名男性说话人说出的100个日本城市名进行了基于说话人的词识别实验,结果表明,该方法的识别准确率为97.3%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Linville power plane stability and bandwidth improvements in a minimum-drift video amplifier Computer-aided large-signal analysis-and-control of boost converter-based switching regulators A SPICE macromodel for an adjustable positive voltage regulator An algorithm for lossless transmission line analysis using bounce charts Application of digital microprocessor technology to power metering in the presence of harmonics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1