STUDY OF THE MAXIMUM DAILY RAINS IN THE CITY OF BARREIRAS/BA THROUGH TIME SERIES METHODOLOGY

E. Medeiros, Alessandra Querino da Silva, Luciano Antonio de Oliveira, C. C. Bicalho, Kelly Pereira de Lima
{"title":"STUDY OF THE MAXIMUM DAILY RAINS IN THE CITY OF BARREIRAS/BA THROUGH TIME SERIES METHODOLOGY","authors":"E. Medeiros, Alessandra Querino da Silva, Luciano Antonio de Oliveira, C. C. Bicalho, Kelly Pereira de Lima","doi":"10.5892/RUVRD.V1I18.5971","DOIUrl":null,"url":null,"abstract":"Natural disasters are increasingly present in everyday society. In Brazil the most common natural disasters are landslides and floods which are phenomena directly related to hydrological variables such as rainfall. The study and statistical monitoring of the meteorological regime of a given region, in particular, daily maximum rainfall data can provide important information to guide public disaster prevention policies, as well as reduce the human vulnerability of the local population. The main objective of this paper was to analyze a historical series related to the maximum daily rainfall of the city of Barreiras/BA from january 1970 to may 2019 through time series analysis. Results of applied tests indicated the presence of seasonality and also that there is no trend in the series. Given this, the SARIMA model class was considered the most suitable for modeling and the adjusted models presented good predictions allowing the identification of patterns in the series.","PeriodicalId":21205,"journal":{"name":"Revista da Universidade Vale do Rio Verde","volume":"23 1","pages":"287-295"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista da Universidade Vale do Rio Verde","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5892/RUVRD.V1I18.5971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Natural disasters are increasingly present in everyday society. In Brazil the most common natural disasters are landslides and floods which are phenomena directly related to hydrological variables such as rainfall. The study and statistical monitoring of the meteorological regime of a given region, in particular, daily maximum rainfall data can provide important information to guide public disaster prevention policies, as well as reduce the human vulnerability of the local population. The main objective of this paper was to analyze a historical series related to the maximum daily rainfall of the city of Barreiras/BA from january 1970 to may 2019 through time series analysis. Results of applied tests indicated the presence of seasonality and also that there is no trend in the series. Given this, the SARIMA model class was considered the most suitable for modeling and the adjusted models presented good predictions allowing the identification of patterns in the series.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用时间序列方法研究巴雷拉斯/巴市最大日降雨量
自然灾害越来越多地出现在日常社会中。在巴西,最常见的自然灾害是滑坡和洪水,这是与降雨等水文变量直接相关的现象。对某一地区的气象情况进行研究和统计监测,特别是每日最大降雨量数据,可以为指导公共防灾政策提供重要信息,并减少当地人口的脆弱性。本文的主要目的是通过时间序列分析,分析1970年1月至2019年5月巴雷拉斯/BA市最大日降雨量的历史序列。应用试验的结果表明,季节性的存在,也没有趋势的系列。考虑到这一点,SARIMA模型类被认为是最适合建模的,调整后的模型提供了很好的预测,允许识别系列中的模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
REVASCULARIZAÇÃO DO TECIDO PULPAR: UMA REVISÃO DE LITERATURA CONTRIBUIÇÃO DA SECRETARIA DE CIÊNCIA, TECNOLOGIA E INOVAÇÃO – SECITEC PARA INOVAÇÃO E TECNOLOGIA NO ESTADO DE MATO GROSSO ______________________________________ PROPOSIÇÕES DE ESTRATÉGIAS DE PRODUÇÃO E VENDAS: ANÁLISE EM UMA AGROPECUÁRIA PRODUTORA DE ERVA-MATE RELAÇÕES DE DIFERENTES PROFUNDIDADES DE SEMEADURA E TEXTURA DO SOLO NA EMERGÊNCIA E DESENVOLVIMENTO INICIAL DE PLÂNTULAS DE MILHO INTERVENÇÃO EDUCATIVA PARA PROMOÇÃO DA AMAMENTAÇÃO EXCLUSIVA: CONTRIBUIÇÕES DO MODELO TRANSTEÓRICO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1