Diagnostic Classification of Digital Mammograms by Wavelet-Based Spectral Tools: A Comparative Study

Erin K. Hamilton, Seonghye Jeon, Pepa Ramírez-Cobo, K. Lee, B. Vidakovic
{"title":"Diagnostic Classification of Digital Mammograms by Wavelet-Based Spectral Tools: A Comparative Study","authors":"Erin K. Hamilton, Seonghye Jeon, Pepa Ramírez-Cobo, K. Lee, B. Vidakovic","doi":"10.1109/BIBM.2011.44","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to present results from a comparative investigation into the diagnostic performance of several wavelet-based estimators of scaling, some from published literature and some newly proposed. These estimators are evaluated based on their ability to classify digitized mammogram images from a clinical database, for which the true disease status is known by biopsy. We found that Abry-Veitch and modified weighted Theil-type estimators provided the best classification rates, while the standard wavelet-based OLS estimator performed worst. The results are robust with respect to choice of wavelets (Haar wavelet being an exception) and are of potential clinical value. The diagnostic is based on the properties of image backgrounds (which is an unused diagnostic modality in Mammograms) and the best correct classification rates achieve 90\\%, varying slightly with the choice of basis, levels used, and size of training set.","PeriodicalId":6345,"journal":{"name":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","volume":"18 1","pages":"384-389"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2011.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The aim of this paper is to present results from a comparative investigation into the diagnostic performance of several wavelet-based estimators of scaling, some from published literature and some newly proposed. These estimators are evaluated based on their ability to classify digitized mammogram images from a clinical database, for which the true disease status is known by biopsy. We found that Abry-Veitch and modified weighted Theil-type estimators provided the best classification rates, while the standard wavelet-based OLS estimator performed worst. The results are robust with respect to choice of wavelets (Haar wavelet being an exception) and are of potential clinical value. The diagnostic is based on the properties of image backgrounds (which is an unused diagnostic modality in Mammograms) and the best correct classification rates achieve 90\%, varying slightly with the choice of basis, levels used, and size of training set.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于小波的光谱工具对数字乳房x线照片诊断分类的比较研究
本文的目的是对几种基于小波的尺度估计器的诊断性能进行比较研究,其中一些来自已发表的文献,一些是新提出的。这些估计器的评估是基于它们对临床数据库中数字化乳房x光图像进行分类的能力,其中真实的疾病状态是通过活检得知的。我们发现Abry-Veitch和改进的加权theil型估计器提供了最好的分类率,而标准的基于小波的OLS估计器表现最差。结果在小波的选择方面是稳健的(哈尔小波例外),具有潜在的临床价值。诊断是基于图像背景的属性(这是乳房x光片中未使用的诊断模式),最佳正确分类率达到90%,随着基础的选择、使用的水平和训练集的大小而略有不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolution of protein architectures inferred from phylogenomic analysis of CATH Hierarchical modeling of alternative exon usage associations with survival 3D point cloud sensors for low-cost medical in-situ visualization Bayesian Classifiers for Chemical Toxicity Prediction Normal mode analysis of protein structure dynamics based on residue contact energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1