{"title":"Colchicine, Inflammation and Fibrosis in Cardiovascular Disease: Merging Three Classical Tales","authors":"G. Chaldakov","doi":"10.14748/BMR.V28.4456","DOIUrl":null,"url":null,"abstract":"Colchicine, isolated from Colchicum autumnale, is a drug for acute gouty arthritis known from thousands of years whose use has survived to modernity. Over the past decades, the use for this very old drug extended beyond gout therapy. This was due to the advance in knowledge of (i) association of hyperuricemia and gout with cardiovascular disease, (ii) cytoskeletal microtubules (МТ), and (iii) anti-inflammatory and antifibrotic effects of colchicine, a classical MT-disassembling agent (antitubulin). Here, we present the Bulgarian contribution to colchicine potential in the therapy of cardiovascular disease that has emerged in the early 1970`s in the Laboratory of Electron Microscopy, Medical Institute, Varna, Bulgaria, studying the secretory (fibrogenic) function of vascular smooth muscle cells. From this time onward, low-dose colchicine (LoDoCo, 0.5 - 1.0 mg/daily) was increasingly administered orally for therapy of cardiovascular disease such as acute coronary syndromes, cardiac surgery postoperative atrial fibrillation, pericarditis, cardiac hypertrophy-associated heart failure, and systemic necrotizing vasculitis. Thus colchicine might be a new tool in the present therapeutic armamentarium for these diseases. It is simply an example of MT-disassembling drugs. Further studies will definitely be required before gaining real confidence in this kind of antitubulin therapy. This may lead to developing new and more specific antitubulins for therapy of cardiovascular disease. Biomed Rev 2017; 28: 105-110. Keywords: microtubules, tubulin, colchicine, antitubulins, cardiovascular diseases, inflammation, fibrosis","PeriodicalId":8906,"journal":{"name":"Biomedical Reviews","volume":"4 1","pages":"105-110"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14748/BMR.V28.4456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Colchicine, isolated from Colchicum autumnale, is a drug for acute gouty arthritis known from thousands of years whose use has survived to modernity. Over the past decades, the use for this very old drug extended beyond gout therapy. This was due to the advance in knowledge of (i) association of hyperuricemia and gout with cardiovascular disease, (ii) cytoskeletal microtubules (МТ), and (iii) anti-inflammatory and antifibrotic effects of colchicine, a classical MT-disassembling agent (antitubulin). Here, we present the Bulgarian contribution to colchicine potential in the therapy of cardiovascular disease that has emerged in the early 1970`s in the Laboratory of Electron Microscopy, Medical Institute, Varna, Bulgaria, studying the secretory (fibrogenic) function of vascular smooth muscle cells. From this time onward, low-dose colchicine (LoDoCo, 0.5 - 1.0 mg/daily) was increasingly administered orally for therapy of cardiovascular disease such as acute coronary syndromes, cardiac surgery postoperative atrial fibrillation, pericarditis, cardiac hypertrophy-associated heart failure, and systemic necrotizing vasculitis. Thus colchicine might be a new tool in the present therapeutic armamentarium for these diseases. It is simply an example of MT-disassembling drugs. Further studies will definitely be required before gaining real confidence in this kind of antitubulin therapy. This may lead to developing new and more specific antitubulins for therapy of cardiovascular disease. Biomed Rev 2017; 28: 105-110. Keywords: microtubules, tubulin, colchicine, antitubulins, cardiovascular diseases, inflammation, fibrosis