{"title":"Methylene Blue Photocatalytic Degradation under Visible Irradiation on In2S3 Synthesized by Chemical Bath Deposition","authors":"W. Vallejo, Carlos Díaz-Uribe, Kathy Rios","doi":"10.1155/2017/6358601","DOIUrl":null,"url":null,"abstract":"In this work, we synthesized In2S3 powder through chemical bath deposition method (CBD) in acid medium; we used thioacetamide as sulphide source and InCl3 as indium ion source. X-ray diffraction, diffuse reflection, and Raman spectroscopy measurements were used for In2S3 powder physicochemical characterization. Optical analysis indicated that In2S3 was active in the visible region of electromagnetic spectrum; it had a band gap of 2.47 eV; the diffraction patterns and Raman spectroscopy suggested that powder had polycrystalline structure. Furthermore, we also studied the adsorption process of methylene blue (MB) on In2S3 powder; adsorption studies indicated that the Langmuir model describes experimental data. Finally, photocatalytic degradation of MB was studied under visible irradiation in aqueous solution; besides, pseudo-first-order model was used to obtain kinetic information about photocatalytic degradation; results indicated that the powder catalyst reduces 26% concentration of MB under visible irradiation.","PeriodicalId":7371,"journal":{"name":"Advances in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2017/6358601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
In this work, we synthesized In2S3 powder through chemical bath deposition method (CBD) in acid medium; we used thioacetamide as sulphide source and InCl3 as indium ion source. X-ray diffraction, diffuse reflection, and Raman spectroscopy measurements were used for In2S3 powder physicochemical characterization. Optical analysis indicated that In2S3 was active in the visible region of electromagnetic spectrum; it had a band gap of 2.47 eV; the diffraction patterns and Raman spectroscopy suggested that powder had polycrystalline structure. Furthermore, we also studied the adsorption process of methylene blue (MB) on In2S3 powder; adsorption studies indicated that the Langmuir model describes experimental data. Finally, photocatalytic degradation of MB was studied under visible irradiation in aqueous solution; besides, pseudo-first-order model was used to obtain kinetic information about photocatalytic degradation; results indicated that the powder catalyst reduces 26% concentration of MB under visible irradiation.