Uncertainty quantification and sensitivity analysis of energy consumption in substation buildings at the planning stage

IF 2.2 4区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Journal of Building Performance Simulation Pub Date : 2022-11-18 DOI:10.1080/19401493.2022.2141881
Juanli Guo, Zhoupeng Wang, Mingchen Li, Yongyun Jin
{"title":"Uncertainty quantification and sensitivity analysis of energy consumption in substation buildings at the planning stage","authors":"Juanli Guo, Zhoupeng Wang, Mingchen Li, Yongyun Jin","doi":"10.1080/19401493.2022.2141881","DOIUrl":null,"url":null,"abstract":"ABSTRACT This study is the first to conduct a global sensitivity analysis to identify the crucial variables that have an impact on the energy consumption of substations. The peak cooling and heating energy consumption, as well as the annual cooling and heating energy consumption of a substation in Shandong, are all simulated basing the Monte Carlo method. The simulation outputs are discussed by uncertainty analysis to obtain more accurate energy consumption thresholds. Subsequently, the treed Gaussian process and the standardized rank regression coefficient are used to perform a global sensitivity analysis of the simulation outputs. The results of the two global sensitivity analyses are practically the same, demonstrating that robustness can be ensured by simultaneously using two methods based on different theories. In addition, this study provides an efficient method for the energy-saving retrofitting of the existing substation and the energy-saving design of green substations in the future.","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":"174 1","pages":"327 - 345"},"PeriodicalIF":2.2000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Building Performance Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/19401493.2022.2141881","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT This study is the first to conduct a global sensitivity analysis to identify the crucial variables that have an impact on the energy consumption of substations. The peak cooling and heating energy consumption, as well as the annual cooling and heating energy consumption of a substation in Shandong, are all simulated basing the Monte Carlo method. The simulation outputs are discussed by uncertainty analysis to obtain more accurate energy consumption thresholds. Subsequently, the treed Gaussian process and the standardized rank regression coefficient are used to perform a global sensitivity analysis of the simulation outputs. The results of the two global sensitivity analyses are practically the same, demonstrating that robustness can be ensured by simultaneously using two methods based on different theories. In addition, this study provides an efficient method for the energy-saving retrofitting of the existing substation and the energy-saving design of green substations in the future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
规划阶段变电站建筑能耗的不确定性量化与敏感性分析
本研究首次进行了全球敏感性分析,以确定影响变电站能耗的关键变量。采用蒙特卡罗方法,对山东某变电站的冷热峰值能耗和年冷热能耗进行了模拟。通过不确定性分析对仿真结果进行讨论,得到更精确的能耗阈值。随后,使用树状高斯过程和标准化秩回归系数对模拟输出进行全局灵敏度分析。两种方法的全局敏感性分析结果基本一致,表明基于不同理论的两种方法同时使用可以保证鲁棒性。此外,本研究也为现有变电站的节能改造和未来绿色变电站的节能设计提供了有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Building Performance Simulation
Journal of Building Performance Simulation CONSTRUCTION & BUILDING TECHNOLOGY-
CiteScore
5.50
自引率
12.00%
发文量
55
审稿时长
12 months
期刊介绍: The Journal of Building Performance Simulation (JBPS) aims to make a substantial and lasting contribution to the international building community by supporting our authors and the high-quality, original research they submit. The journal also offers a forum for original review papers and researched case studies We welcome building performance simulation contributions that explore the following topics related to buildings and communities: -Theoretical aspects related to modelling and simulating the physical processes (thermal, air flow, moisture, lighting, acoustics). -Theoretical aspects related to modelling and simulating conventional and innovative energy conversion, storage, distribution, and control systems. -Theoretical aspects related to occupants, weather data, and other boundary conditions. -Methods and algorithms for optimizing the performance of buildings and communities and the systems which service them, including interaction with the electrical grid. -Uncertainty, sensitivity analysis, and calibration. -Methods and algorithms for validating models and for verifying solution methods and tools. -Development and validation of controls-oriented models that are appropriate for model predictive control and/or automated fault detection and diagnostics. -Techniques for educating and training tool users. -Software development techniques and interoperability issues with direct applicability to building performance simulation. -Case studies involving the application of building performance simulation for any stage of the design, construction, commissioning, operation, or management of buildings and the systems which service them are welcomed if they include validation or aspects that make a novel contribution to the knowledge base.
期刊最新文献
Comparing overheating risk and mitigation strategies for two Canadian schools by using building simulation calibrated with measured data Using Fourier series to obtain cross periodic wall response factors Limitations and issues of conventional artificial neural network-based surrogate models for building energy retrofit An empirical review of methods to assess overheating in buildings in the context of changes to extreme heat events Coupling BIM and detailed modelica simulations of HVAC systems in a common data environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1