F-coref: Fast, Accurate and Easy to Use Coreference Resolution

Q3 Environmental Science AACL Bioflux Pub Date : 2022-09-09 DOI:10.48550/arXiv.2209.04280
Shon Otmazgin, Arie Cattan, Yoav Goldberg
{"title":"F-coref: Fast, Accurate and Easy to Use Coreference Resolution","authors":"Shon Otmazgin, Arie Cattan, Yoav Goldberg","doi":"10.48550/arXiv.2209.04280","DOIUrl":null,"url":null,"abstract":"We introduce fastcoref, a python package for fast, accurate, and easy-to-use English coreference resolution. The package is pip-installable, and allows two modes: an accurate mode based on the LingMess architecture, providing state-of-the-art coreference accuracy, and a substantially faster model, F-coref, which is the focus of this work. F-coref allows to process 2.8K OntoNotes documents in 25 seconds on a V100 GPU (compared to 6 minutes for the LingMess model, and to 12 minutes of the popular AllenNLP coreference model) with only a modest drop in accuracy. The fast speed is achieved through a combination of distillation of a compact model from the LingMess model, and an efficient batching implementation using a technique we call leftover batching. https://github.com/shon-otmazgin/fastcoref","PeriodicalId":39298,"journal":{"name":"AACL Bioflux","volume":"47 1","pages":"48-56"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AACL Bioflux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.04280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 7

Abstract

We introduce fastcoref, a python package for fast, accurate, and easy-to-use English coreference resolution. The package is pip-installable, and allows two modes: an accurate mode based on the LingMess architecture, providing state-of-the-art coreference accuracy, and a substantially faster model, F-coref, which is the focus of this work. F-coref allows to process 2.8K OntoNotes documents in 25 seconds on a V100 GPU (compared to 6 minutes for the LingMess model, and to 12 minutes of the popular AllenNLP coreference model) with only a modest drop in accuracy. The fast speed is achieved through a combination of distillation of a compact model from the LingMess model, and an efficient batching implementation using a technique we call leftover batching. https://github.com/shon-otmazgin/fastcoref
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
F-coref:快速,准确和易于使用的共同参考分辨率
我们介绍fastcoref,这是一个python包,用于快速、准确和易于使用的英语共同参考解析。该包是可pip安装的,并允许两种模式:基于LingMess架构的精确模式,提供最先进的共参考精度,以及更快的模型F-coref,这是本工作的重点。F-coref允许在V100 GPU上在25秒内处理2.8K OntoNotes文档(相比之下,LingMess模型需要6分钟,流行的AllenNLP共同参考模型需要12分钟),精度只有轻微下降。快速的速度是通过结合LingMess模型的精简模型的蒸馏,以及使用我们称之为剩余批处理技术的高效批处理实现来实现的。https://github.com/shon-otmazgin/fastcoref
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AACL Bioflux
AACL Bioflux Environmental Science-Management, Monitoring, Policy and Law
CiteScore
1.40
自引率
0.00%
发文量
0
期刊最新文献
HaRiM^+: Evaluating Summary Quality with Hallucination Risk PESE: Event Structure Extraction using Pointer Network based Encoder-Decoder Architecture Bipartite-play Dialogue Collection for Practical Automatic Evaluation of Dialogue Systems Local Structure Matters Most in Most Languages Unsupervised Domain Adaptation for Sparse Retrieval by Filling Vocabulary and Word Frequency Gaps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1