An Underwater Network for Mini-Submarine Underwater Observatory

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Big Data Pub Date : 2023-08-03 DOI:10.1109/icABCD59051.2023.10220457
A. Periola, M. Sumbwanyambe
{"title":"An Underwater Network for Mini-Submarine Underwater Observatory","authors":"A. Periola, M. Sumbwanyambe","doi":"10.1109/icABCD59051.2023.10220457","DOIUrl":null,"url":null,"abstract":"Ice melting in the Arctic enables the conduct of underwater neutrino astronomy in new regions with maritime resources. The presented research proposes a novel underwater network that is integrated with terrestrial computing entities to obtain underwater astronomy-associated data. In addition, the proposed network architecture enhances the conduct of underwater neutrino astronomy. This is done by increasing the potential neutrino presence points. Analysis shows that the use of the arctic region in addition to the existing region of Lake Baikal in comparison to the existing case (where only Lake Baikal is utilized) increases the potential neutrino presence points by an average of (28.3 – 65.7) %.","PeriodicalId":51314,"journal":{"name":"Big Data","volume":"118 1","pages":"1-6"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/icABCD59051.2023.10220457","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Ice melting in the Arctic enables the conduct of underwater neutrino astronomy in new regions with maritime resources. The presented research proposes a novel underwater network that is integrated with terrestrial computing entities to obtain underwater astronomy-associated data. In addition, the proposed network architecture enhances the conduct of underwater neutrino astronomy. This is done by increasing the potential neutrino presence points. Analysis shows that the use of the arctic region in addition to the existing region of Lake Baikal in comparison to the existing case (where only Lake Baikal is utilized) increases the potential neutrino presence points by an average of (28.3 – 65.7) %.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小型潜艇水下观测站的水下网络
北极地区的冰融化使在有海洋资源的新地区进行水下中微子天文学成为可能。本研究提出了一种与地面计算实体相结合的新型水下网络,以获取水下天文相关数据。此外,所提出的网络结构增强了水下中微子天文学的进行。这是通过增加潜在的中微子存在点来实现的。分析表明,与现有情况(仅利用贝加尔湖)相比,除了利用贝加尔湖现有区域外,还利用北极地区,使潜在中微子存在点平均增加(28.3 - 65.7%)%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Big Data
Big Data COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
9.10
自引率
2.20%
发文量
60
期刊介绍: Big Data is the leading peer-reviewed journal covering the challenges and opportunities in collecting, analyzing, and disseminating vast amounts of data. The Journal addresses questions surrounding this powerful and growing field of data science and facilitates the efforts of researchers, business managers, analysts, developers, data scientists, physicists, statisticians, infrastructure developers, academics, and policymakers to improve operations, profitability, and communications within their businesses and institutions. Spanning a broad array of disciplines focusing on novel big data technologies, policies, and innovations, the Journal brings together the community to address current challenges and enforce effective efforts to organize, store, disseminate, protect, manipulate, and, most importantly, find the most effective strategies to make this incredible amount of information work to benefit society, industry, academia, and government. Big Data coverage includes: Big data industry standards, New technologies being developed specifically for big data, Data acquisition, cleaning, distribution, and best practices, Data protection, privacy, and policy, Business interests from research to product, The changing role of business intelligence, Visualization and design principles of big data infrastructures, Physical interfaces and robotics, Social networking advantages for Facebook, Twitter, Amazon, Google, etc, Opportunities around big data and how companies can harness it to their advantage.
期刊最新文献
DMHANT: DropMessage Hypergraph Attention Network for Information Propagation Prediction. Maximizing Influence in Social Networks Using Combined Local Features and Deep Learning-Based Node Embedding. A Weighted GraphSAGE-Based Context-Aware Approach for Big Data Access Control. Attribute-Based Adaptive Homomorphic Encryption for Big Data Security. Hybrid Deep Learning Approach for Traffic Speed Prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1