Design and Performance Analysis of a Cascaded Model Predictive Controller and Command Governor for Fuel-Efficient Control of Heavy-Duty Trucks

IF 1.7 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Journal of Dynamic Systems Measurement and Control-Transactions of the Asme Pub Date : 2021-06-01 DOI:10.1115/1.4049544
Ben Groelke, John Borek, Christian Earnhardt, C. Vermillion
{"title":"Design and Performance Analysis of a Cascaded Model Predictive Controller and Command Governor for Fuel-Efficient Control of Heavy-Duty Trucks","authors":"Ben Groelke, John Borek, Christian Earnhardt, C. Vermillion","doi":"10.1115/1.4049544","DOIUrl":null,"url":null,"abstract":"\n This paper presents the design and analysis of a predictive ecological control strategy for a heavy-duty truck that achieves substantial fuel savings while maintaining safe following distances in the presence of traffic. The hallmark of the proposed algorithm is the fusion of a long-horizon economic model predictive controller (MPC) for ecological driving with a command governor (CG) for safe vehicle following. The performance of the proposed control strategy was evaluated in simulation using a proprietary medium-fidelity Simulink model of a heavy-duty truck. Results show that the strategy yields substantial fuel economy improvements over a baseline, the extent of which are heavily dependent on the horizon length of the CG. The best fuel and vehicle-following performance are achieved when the CG horizon has a length of 20–40 s, reducing fuel consumption by 4–6% when compared to a Gipps car-following model.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"106 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4049544","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents the design and analysis of a predictive ecological control strategy for a heavy-duty truck that achieves substantial fuel savings while maintaining safe following distances in the presence of traffic. The hallmark of the proposed algorithm is the fusion of a long-horizon economic model predictive controller (MPC) for ecological driving with a command governor (CG) for safe vehicle following. The performance of the proposed control strategy was evaluated in simulation using a proprietary medium-fidelity Simulink model of a heavy-duty truck. Results show that the strategy yields substantial fuel economy improvements over a baseline, the extent of which are heavily dependent on the horizon length of the CG. The best fuel and vehicle-following performance are achieved when the CG horizon has a length of 20–40 s, reducing fuel consumption by 4–6% when compared to a Gipps car-following model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重型卡车节油控制的级联模型预测控制器和命令调速器的设计与性能分析
本文介绍了一种重型卡车的预测性生态控制策略的设计和分析,该策略在存在交通的情况下实现了大量的燃油节约,同时保持了安全的跟随距离。该算法的特点是将用于生态驾驶的长期经济模型预测控制器(MPC)与用于安全车辆跟随的命令调速器(CG)相融合。利用自主研发的中型保真度Simulink重型卡车仿真模型对所提出的控制策略进行了性能评估。结果表明,该策略在基线上产生了显著的燃油经济性改善,其程度在很大程度上取决于CG的水平长度。当CG地平线长度为20-40秒时,燃油和车辆跟随性能达到最佳,与Gipps汽车跟随模型相比,燃油消耗降低了4-6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
11.80%
发文量
79
审稿时长
24.0 months
期刊介绍: The Journal of Dynamic Systems, Measurement, and Control publishes theoretical and applied original papers in the traditional areas implied by its name, as well as papers in interdisciplinary areas. Theoretical papers should present new theoretical developments and knowledge for controls of dynamical systems together with clear engineering motivation for the new theory. New theory or results that are only of mathematical interest without a clear engineering motivation or have a cursory relevance only are discouraged. "Application" is understood to include modeling, simulation of realistic systems, and corroboration of theory with emphasis on demonstrated practicality.
期刊最新文献
Spiking-Free Disturbance Observer-Based Sliding-Mode Control for Mismatched Uncertain System Current Imbalance in Dissimilar Parallel-Connected Batteries and the Fate of Degradation Convergence Self-Optimizing Vapor Compression Cycles Online With Bayesian Optimization Under Local Search Region Constraints Nonlinear Temperature Control of Additive Friction Stir Deposition Evaluated On an Echo State Network Closed-Loop Control and Plant Co-Design of a Hybrid Electric Unmanned Air Vehicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1