S. Thiyagu, Chen-Chih Hsueh, Chien-Ting Liu, Hong-Jhang Syu, Song-ting Yang, Ching-Fuh Lin
{"title":"High efficiency hybrid organic/silicon-nanohole heterojunction solar cells","authors":"S. Thiyagu, Chen-Chih Hsueh, Chien-Ting Liu, Hong-Jhang Syu, Song-ting Yang, Ching-Fuh Lin","doi":"10.1109/PVSC.2014.6925213","DOIUrl":null,"url":null,"abstract":"In this work, a simple method of solution process to fabricate high density Silicon nanohole (SiNH) arrays on n-type wafer is experimented. SiNHs exhibit very low reflectance from range of wavelength 300 to 1100 nm irrespective of the angle of incidence, better than Si nanowires. The SiNH arrays have a strong light trapping effect between the nanostructures causes high absorption. We experimentally demonstrate high-efficiency organic-inorganic hybrid solar cells, Si/PEDOT:PSS with silicon nanoholes. Such Si/PEDOT:PSS hybrid solar cells exhibit high Jsc of 36.80 mA/cm2, Voc of 0.52V, FF of 66.50%, and thus power conversion efficiency (PCE) of 12.72%. SiNH arrays produce a large surface-area-to-volume ratio, hence allowing efficient light harvesting and charge collection via the formation of a core-sheath p-n junction.","PeriodicalId":6649,"journal":{"name":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","volume":"14 1","pages":"1553-1555"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2014.6925213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this work, a simple method of solution process to fabricate high density Silicon nanohole (SiNH) arrays on n-type wafer is experimented. SiNHs exhibit very low reflectance from range of wavelength 300 to 1100 nm irrespective of the angle of incidence, better than Si nanowires. The SiNH arrays have a strong light trapping effect between the nanostructures causes high absorption. We experimentally demonstrate high-efficiency organic-inorganic hybrid solar cells, Si/PEDOT:PSS with silicon nanoholes. Such Si/PEDOT:PSS hybrid solar cells exhibit high Jsc of 36.80 mA/cm2, Voc of 0.52V, FF of 66.50%, and thus power conversion efficiency (PCE) of 12.72%. SiNH arrays produce a large surface-area-to-volume ratio, hence allowing efficient light harvesting and charge collection via the formation of a core-sheath p-n junction.