B. Aja, M. Seelmann-Eggebert, A. Leuther, H. Massler, M. Schlechtweg, J. Gallego, I. López-Fernández, C. Diez, I. Malo, E. Villa, E. Artal
{"title":"4–12 GHz and 25–34 GHz cryogenic MHEMT MMIC Low Noise Amplifiers for radio astronomy","authors":"B. Aja, M. Seelmann-Eggebert, A. Leuther, H. Massler, M. Schlechtweg, J. Gallego, I. López-Fernández, C. Diez, I. Malo, E. Villa, E. Artal","doi":"10.1109/MWSYM.2012.6259592","DOIUrl":null,"url":null,"abstract":"MMIC Broadband Low Noise Amplifiers (LNA) for radio astronomy applications with 100 nm GaAs metamorphic High Electron Mobility Transistor (mHEMT) process have been developed. Cryogenic performance of a 4–12 GHz and a 25–34 GHz LNAs is presented. The 4–12 GHz LNA cooled at 15 K exhibits an associated gain of 31.5 dB ± 1.8 dB and average noise temperature of 5.3 K with a low power dissipation of 8 mW. Cooled to 15 K the 25–34 GHz amplifier has demonstrated a flat gain of 24.2 dB ± 0.4 dB with 15.2 K average noise temperature, and a very low power dissipation of 2.8 mW on chip. The mHEMT based LNA MMICs have demonstrated excellent noise characteristics at cryogenic temperatures for their use in radio astronomy applications.","PeriodicalId":6385,"journal":{"name":"2012 IEEE/MTT-S International Microwave Symposium Digest","volume":"2 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/MTT-S International Microwave Symposium Digest","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2012.6259592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
MMIC Broadband Low Noise Amplifiers (LNA) for radio astronomy applications with 100 nm GaAs metamorphic High Electron Mobility Transistor (mHEMT) process have been developed. Cryogenic performance of a 4–12 GHz and a 25–34 GHz LNAs is presented. The 4–12 GHz LNA cooled at 15 K exhibits an associated gain of 31.5 dB ± 1.8 dB and average noise temperature of 5.3 K with a low power dissipation of 8 mW. Cooled to 15 K the 25–34 GHz amplifier has demonstrated a flat gain of 24.2 dB ± 0.4 dB with 15.2 K average noise temperature, and a very low power dissipation of 2.8 mW on chip. The mHEMT based LNA MMICs have demonstrated excellent noise characteristics at cryogenic temperatures for their use in radio astronomy applications.