Leila Masti, A. Bezaatpour, N. Bozari, Y. Azizian-Kalandaragh
{"title":"Photocatalytic reduction of nitro aromatic compounds to their corresponding amino aromatic compounds by rGO/ZnFe2O4 under visible light irradiation","authors":"Leila Masti, A. Bezaatpour, N. Bozari, Y. Azizian-Kalandaragh","doi":"10.22075/CHEM.2021.21751.1914","DOIUrl":null,"url":null,"abstract":"In this research work, the rGO/ZnFe2O4 photocatalyst was prepared by hydrothermal method and characterized and identified using X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), field emission scanning electron microscope (FE-SEM), Diffuse Reflectance Spectroscopy (DRS), vibrating-sample magnetometer (VSM), surface area analysis (BET) and Energy-dispersive X-ray spectroscopy (EDAX) techniques. The photocatalyst was used for the reduction of nitroaromatic compounds to their corresponding aromatic amines with hydrazine monohydrate. The catalyst showed the best activity in the reduction of 1,4-dinitrobenzen (%97 conversion in 40 min). The recyclability and reusability of the catalyst was evaluated for four times which showed no significant variation in the conversion of nitrobenzene photoreduction reaction.","PeriodicalId":7954,"journal":{"name":"Applied Chemistry","volume":"17 1","pages":"109-122"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22075/CHEM.2021.21751.1914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this research work, the rGO/ZnFe2O4 photocatalyst was prepared by hydrothermal method and characterized and identified using X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), field emission scanning electron microscope (FE-SEM), Diffuse Reflectance Spectroscopy (DRS), vibrating-sample magnetometer (VSM), surface area analysis (BET) and Energy-dispersive X-ray spectroscopy (EDAX) techniques. The photocatalyst was used for the reduction of nitroaromatic compounds to their corresponding aromatic amines with hydrazine monohydrate. The catalyst showed the best activity in the reduction of 1,4-dinitrobenzen (%97 conversion in 40 min). The recyclability and reusability of the catalyst was evaluated for four times which showed no significant variation in the conversion of nitrobenzene photoreduction reaction.